İNSANDA GADOLİNYUM BİRİKİMİ: RADYOLOJİ UZMANLARI VE KLİNİK UYGULAMALAR ÜZERİNDEKİ ETKİSİ

Amaç: Bu çalışmada, 1) Son yıllarda ortaya konulan, insan beyninde gadolinyum birikimi verileri hakkında radyologların farkındalığı, klinik uygulamaları ve tercihleri üzerindeki etkisi ve 2) Gadolinyum kullanımı ve riski hakkındaki yaklaşımları etkileyen faktörlerin değerlendirilmesi amaçlandı. Ayrıca bu çalışmada, Türkiye’deki radyoloji pratiği hakkında önemli bilgiler sunuldu. Yöntem: İhtisas veya yan dal eğitiminin tamamlanmasından en az bir yıl geçmiş olan radyologlara yönelik 21 soruluk anket hazırlandı. Türk Radyoloji Derneği üyelerine e-posta ile gönderilen anket linki dört hafta boyunca aktifti. Bulgular: Üç yüz otuz beş kişi anketi tamamladı. Katılımcıların %89’u beyinde gadolinyum birikimi hakkındaki gelişmelerden haberdardı. Katılımcıların %45’i gadolinyum birikimi verilerinin ortaya çıkmasından bu yana uyguladıkları gadolinyum miktarını ve/veya gadolinyum gerektiren görüntülemelerin sıklığını azalttığını söyledi. Gadolinyum ajanlarının moleküler sınıflandırmasının farkında olan radyologların %88’i makrosiklik bir ajan kullandığını belirtti. Yüzde 39’u (n=130) önceki üç yıl içinde (2015-2018) lineer bir ajandan makrosiklik bir ajana geçtigini bildirdi. Radyologların gadolinyum birikimine yönelik yaklaşımı, radyoloji deneyimi, üst ihtisas eğitimi, kurumu ve bir radyoloji konferansına katılım sıklığı gibi kişiye özel faktörlerle önemli ölçüde ilişkiliydi. Katılımcıların günlük klinik pratikte gadolinyum birikimine bağlı gelişen hiperintens dentat nukleus gözlemleme sıklığı düşüktü. Sonuç: Gadolinyum birikimi çalışmaları, radyologların MR görüntüleme pratiğini ve yaklaşımını, çoğunlukla makrosiklik gadolinyum ajanlarina geçiş ve gadolinyum kullanımını azaltmak suretiyle etkilemiştir. Bu değişiklikler, radyologların bireysel koşullarına göre değişiklik göstermektedir.

GADOLINIUM RETENTION IN HUMANS: SURVEY OF RADIOLOGISTS AND IMPACT ON DAILY PRACTICE

Objective: We sought to assess the 1) awareness and impact of emerging gadolinium retention data on preferences of radiologists in their practice, and 2) factors that influence the attitudes about gadolinium use and risk. This study also documents various specifics of radiology practice in Turkey. Methods: A twenty-one question survey was directed to radiologists who were at least one year from completion of residency and/or fellowship training. A survey link was emailed to the members of the Turkish Society of Radiology and was active for four weeks. The results were statistically analyzed. Results: Three hundred and thirty-five radiologists completed the survey. At the time of this survey, 89% of respondents were aware of gadolinium retention in the brain. Forty-five percent of respondents said they decreased the amount of gadolinium administered and/or frequency of gadolinium-enhanced scans since the emergence of the gadolinium retention data. Eightyeight percent of radiologists, who were aware of the molecular classification of different gadolinium agents, used a macrocyclic agent. Thirty-nine percent (n=130) had switched to a macrocyclic agent from a linear agent within the previous three years. Radiologists’ attitudes toward gadolinium retention were significantly associated with their background factors such as experience in radiology, subspecialty training, and daily work definition, amongst others. Observence of hyperintense dentate nuclei due to gadolinium retention was uncommon in daily practice. Conclusions: Gadolinium retention publications have affected the practice of contrast enhanced Magnetic resonance imaging (MRI) scans, mostly in the form of switching to a macrocyclic gadolinium agent and decreasing utilization of gadolinium in general for some indications. These changes varied among radiologists by background factors.

___

  • 1. Kanda T, Ishii K, Kawaguchi H, et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834-41. [CrossRef]
  • 2. Adin ME, Yousem DM, Kleinberg L, et al. Hyperintense dentate nuclei on T1 weighted MRI. Presented at the XXth Symposium Neuroradiologicum, Istanbul, Turkey, 2014. O152
  • 3. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku JI, Haruyama T, Takeshita K, Furui S. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 2015;275(3):803-9. [CrossRef]
  • 4. Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM. Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. AJNR Am J Neuroradiol 2015 Sep 10. [CrossRef]
  • 5 Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 2016;37(7):1192-8. [CrossRef]
  • 6. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku JI, Haruyama T, Kitajima K, Furui S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015;276(1):228-32. [CrossRef]
  • 7. Tamrazi B, Nguyen B, Liu CS, Azen CG, Nelson MB, Dhall G, Nelson MD. Changes in signal intensity of the dentate nucleus and globus pallidus in pediatric patients: impact of brain irradiation and presence of primary brain tumors independent of linear gadolinium-based contrast agent administration. Radiology 2017;287(2):452-60. [CrossRef]
  • 8. Adin ME, Yousem DM. Hyperintense dentate nuclei at precontrast T1-weighted MRI: Gadolinium deposition or brain irradiation?. Radiology 2018;288(2):632-3. [CrossRef]
  • 9. Runge VM. Dechelation (Transmetalation): Consequences and Safety Concerns With the Linear Gadolinium-Based Contrast Agents, In View of Recent Health Care Rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Investigative Radiology 2018;53(10):571-8. [CrossRef]
  • 10. Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M et al. Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magn Reson Imaging 2016;34(10):1383-90. [CrossRef]
  • 11. https://gadoliniumtoxicity.com.
  • 12. Gale EM, Atanasova IP, Blasi F, Ay I, Caravan P. A manganese alternative to gadolinium for MRI contrast. J Am Chem Soc 2015;137(49):15548-57. [CrossRef]
  • 13. Park, Eun-Ah, Whal Lee, Young Ho So, Yun-Sang Lee, Bongsik Jeon, et al. Extremely Small Pseudoparamagnetic Iron Oxide Nanoparticle as a Novel Blood Pool T1 Magnetic Resonance Contrast Agent for 3 T Whole-Heart Coronary Angiography in Canines: Comparison With Gadoterate Meglumine. Invest Radiol 2017;52(2):128-33. [CrossRef]
  • 14. Vijayasarathi A, Kharkar R, Salamon N. Strategies for patient-centered communication in the digital age. Curr Probl Diagn Radiol. Epub 2018 Jun 1. [CrossRef]
  • 15. Gefen R, Bruno MA, Abujudeh HH. Online portals: gateway to patient-centered radiology. AJR Am J Roentgenol 2017;209(5):987-91. [CrossRef]
  • 16. Oren O, Kebebew E, Ioannidis JP. Curbing Unnecessary and Wasted Diagnostic Imaging. JAMA 2019;321(3):245- 246. [CrossRef]
  • 17. Guo BJ, Yang ZL, Zhang LJ. Gadolinium Deposition in Brain: Current Scientific Evidence and Future Perspectives. Front Mol Neurosci 2018;11:335. [CrossRef]
  • 18. Zhao J, Zhou ZQ, Jin JC, et al. Mitochondrial dysfunction induced by different concentrations of gadolinium ion. Chemosphere 2014;100:194-9. [CrossRef]
  • 19. Abraham JL, Thakral C. Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur J Radiol 2008;66(2):200-07. [CrossRef]
  • 20. Ray DE, Cavanagh JB, Nolan CC, et al. Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. AJNR Am J Neuroradiol 1996;17(2):365-73.
  • 21. Behzadi AH, Farooq Z, Zhao Y, Shih G, Prince MR. Dentate Nucleus Signal Intensity Decrease on T1-weighted MR Images after Switching from Gadopentetate Dimeglumine to Gadobutrol. Radiology 2018;287(3):816-23. [CrossRef]
  • 22. Adin ME, Yousem DM. Disappearance of T1-weighted MRI Hyperintensity in Dentate Nuclei of Individuals with a History of Repeat Gadolinium Administration. Radiology 2018;288(3):911. [CrossRef]
  • 23. Karimian-Jazi K, Wildemann B, Diem R, Schwarz D, Hielscher T, Wick W, Bendszus M, Breckwoldt MO. Gd contrast administration is dispensable in patients with MS without new T2 lesions on follow-up MRI. Neurol Neuroimmunol Neuroinflamm 2018;5(5):e480. [CrossRef]
  • 24. Eichinger P, Schön S, Pongratz V, Wiestler H, Zhang H, Bussas M, Hoshi MM, Kirschke J, Berthele A, Zimmer C, Hemmer B. Accuracy of unenhanced MRI in the detection of new brain lesions in multiple sclerosis. Radiology 2019:291(2):429-35. [CrossRef]
  • 25. Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrastenhanced brain MRI. J Magn Reson Imaging 2018;48(2):330- 40. [CrossRef]
  • 26. European Society of Radiology. Radiological Training Programmes in Europe: EAR Education Survey - Analysis of Results. 2004 EAR Education Committee. [accessed 2016 May 8]. Available from: URL: https://www.myesr.org/html/ img/pool/ESR_brochure_05.pdf
  • 27. Blumfield E, Moore MM, Drake MK, Goodman TR, Lewis KN, et al. Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a Quality and Safety Committee report. Pediatr Radiol 2017;47(6):665-73. [CrossRef]
  • 28. Nachtigall LB, Karavitaki N, Kiseljak-Vassiliades K, Ghalib L, Fukuoka H, et al. Physicians’ awareness of gadolinium retention and MRI timing practices in the longitudinal management of pituitary tumors: a “Pituitary Society” survey. Pituitary 2019;22(1):37-45. [CrossRef]
  • 29. Fitzgerald RT, Agarwal V, Hoang JK, Gaillard F, Dixon A, Kanal E. The impact of gadolinium deposition on radiology practice: an international survey of radiologists. Curr Probl Diagn Radiol 2019;48(3):220-3. [CrossRef]
  • 30. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275(3):772-82. [CrossRef]
İstanbul Tıp Fakültesi Dergisi-Cover
  • Başlangıç: 1916
  • Yayıncı: İstanbul Üniversitesi Yayınevi
Sayıdaki Diğer Makaleler

İKİ OLGU SUNUMU: İNTRAKRANİAL KANAMANIN EŞLİK ETTİĞİ COVİD-19 VAKALARI

Pınar VARGÜN, Musa KAYA

BASİT DÜŞME SONRASI YAŞLI HASTADA AYNI TARAF EKSTREMİTEDE MULTİPL KIRIK; HUMERUS ŞAFT, OLEKRANON, DİSTAL RADİUS VE DÖRDÜNCÜ METAKARPAL KEMİK KIRIĞI-OLGU SUNUMU

Serkan BAYRAM, Turgut AKGÜL, Lezgin MERT, Mehmet EKİNCİ, İrfan ÖZTÜRK

AĞIR OBEZİTE HASTALARIN SPİNAL ANESTEZİ ALTINDA PERKÜTAN NEFROLİTİTOMİ UYGULANMASI POSTOPERATİF ERKEN DÖNEM İYİLEŞME VE CERRAHİ SONUÇLARINI ETKİLER Mİ?

Ahmed Ömer HALAT, Muhammet İrfan DÖNMEZ, Murat GÖNEN, Ömer Erkam ARSLAN, Betül BAŞARAN

AYNA NÖRON SİSTEMİ VE FONKSİYONLARINA KLİNİK YAKLAŞIM

Emre HARI, Canberk CENGİZ, Ferhat KILIÇ, Ertan YURDAKOŞ

İNFLAMATUAR BARSAK HASTALIKLARI AKTİVASYONU İLE sTREM-1 ARASINDAKİ İLİŞKİ

Yasin KUTLU, İlkim Deniz TOPRAK, Yasemin GÖKDEN, Hasan ERUZUN, Yücel ARMAN, Şengül AYDIN YOLDEMİR, Zeki TOPRAK, Tufan TÜKEK

OKÜLT HEPATİT B VİRÜSÜNÜN GENOTİP, SUBGENOTİP VE SUBTİP ANALİZİ

Bülent ÇAKAL, Alp ATASOY, Bilger ÇAVUŞ, Aslı ÖRMECİ, Mehveş PODA, Mesut BULAKÇI, Mine GÜLLÜOĞLU, Mehmet Güven GÜNVER, Filiz AKYÜZ

İNSANDA GADOLİNYUM BİRİKİMİ: RADYOLOJİ UZMANLARI VE KLİNİK UYGULAMALAR ÜZERİNDEKİ ETKİSİ

Mehmet Emin ADİN, David M YOUSEM

COVID-19 HASTALARINDA MEKANİK VENTİLASYONDAN AYRILMADA TRAKEOTOMİNİN ROLÜ

Levent AYDEMİR, Hakan KARA, Cömert ŞEN, Kadir ORHAN, Meryem Nesil KELEŞ TÜREL

HİPO VE HİPERGLİSEMİNİN NADİR BİR NEDENİ; GLİKOJEN DEPO HASTALIĞI TİP 0: OLGU SUNUMU

Meryem KARACA, Halil ASLAN

GEBELİKTE BESLENME DURUMU İLE GLUKOZ TOLERANSI ARASINDAKİ İLİŞKİLER

Merve YABACI, İlhan SATMAN, Cemile İDİZ, Fulya ÇALIKOĞLU, Atıl YÜKSEL, Beyhan ÖMER, Birsen DEMİREL, Emel ÖZER