DİFERANSİYE TİROİD KANSERLERİNDE RADYOAKTİF İYOT TEDAVİSİ SONRASI GÖRÜNTÜLEME: SPECT-BT GÖRÜNTÜLEMENİN PLANAR GÖRÜNTÜLEMEYE KATKISI

DOI: 10.26650/IUITFD.345626Amaç: Bu çalışmada differansiye papiller tiroid kanseri (DTK) olan hastalarda tedavi sonrası görüntülemede SPECT-BT’nin planar görüntülemeye katkısını araştırdık. Gereç ve Yöntem: DTK tanısı ile opere olan ve radyoaktif iyot tedavisi (100-200mCi)  uygulanan toplam 325 hastaya tedavi sonrası görüntüleme yapıldı (254 kadın, 71 erkek; yaş aralığı: 15-81). Tüm hastaların tüm vücut planar ile boyun-toraks bölgesinden planar + SPECT-BT görüntüleri alındı. Ek olarak planar görüntülerde şüpheli tutulum saptanan alanlardan SPECT-BT görüntüleme yapıldı. Planar görüntülemede benign, şüpheli ve malign olarak sınıflandırılan iyot pozitif alanlar iki nükleer tıp uzmanı tarafından SPECT-BT görüntüleri ile yeniden değerlendirildi. Nihai tanı histoloji, diğer görüntüleme yöntemleri, klinik-serolojik takipler ile doğrulandı. Bulgular: Hasta bazlı sonuçlara göre SPECT-BT planar görüntülemeye ek olarak 21 (21/50) hastada metastatik lenf nodları, 2 (2/10) hastada akciğer metastazları, 2 (2/12) hastada kemik metastazları tespit ederek;  83 hastada benign, 48 hastada malign olmak üzere şüpheli tutulumları açıklığa kavuşturarak planar görüntüleme yorumunu değiştirdi.   Duyarlılık, özgüllük, pozitif prediktif değer, negatif prediktif değer ve doğruluk planar görüntüleme için sırasıyla %63,4, %92,7, %67,7, %91,3, %87 iken SPECT-BT için sırasıyla % 96,8, % 100, %100, %99,2 ve %99,3 olarak hesaplandı. SPECT-BT toplamda 76 hastanın (%23,3) tedavi yönetimini etkiledi. Sonuç: SPECT-BT görüntüleme, DTC hastalarında tedavi sonrası taramada planar görüntülemenin yanlış negatif/pozitif sonuçlarını azaltarak tanısal doğruluğu artırmaktadır. Sonuçlarımız DTC’nin en sık metastaz yaptığı boyun ve toraks bölgesinin değerlendirilmesinde SPECT-BT görüntülemenin rutin görüntüleme protokolüne alınmasını önermektedir.
Anahtar Kelimeler:

Radyoaktif, iyot, SPECT-BT

POST-THERAPY IMAGING AFTER RADIOACTIVE IODINE THERAPY FOR DIFFERENTIATED THYROID CANCER: THE CONTRIBUTION OF SPECT-CT IMAGING TO PLANAR IMAGING

DOI: 10.26650/IUITFD.345626Objective: The aim of this study was to investigate the contribution of SPECT-CT to planar imaging in patients with differentiated thyroid carcinoma (DTC) following radioiodine therapy.Materials and Methods: Post-therapy scan was performed on 325 patients (254 women, 71 men; age range 15-81 years) who were operated on for DTC and treated with radioactive iodine (100-200 mCi) therapy. Whole-body planar imaging and neck–chest planar + SPECT-CT imaging were performed on all patients. Additional SPECT-CT scans were performed in other areas where suspicious findings were observed on the planar images. The iodine-positive areas on the planar images were classified as benign, equivocal, or malignant and were also reevaluated by two nuclear medicine physicians using SPECT-CT images. The final diagnosis was verified by histology, other imaging modalities, and clinical–serological follow-up.Results: Based on patient-based analysis, SPECT/CT altered the interpretation of the planar scans by detecting the following findings: additional metastatic lymph nodes in 21 (21/50) patients, lung metastases in 2 (2/10) patients, and bone metastases in 2 (2/12) patients. Furthermore, SPECT/CT confirmed that equivocal focal uptakes were benign in 83 patients and malign in 48 patients. The sensivity, specificity, positive predictive value, negative predictive value, and accuracy were 63.4%, 92.7%, 67.7%, 91.3%, and 87%, respectively, for the planar imaging and 96.8%, 100%, 100%, 99.2%, and 99.3%, respectively, for the SPECT-CT imaging. Overall, SPECT-CT affected therapy management in 76 patients (23.3%). Conclusion: SPECT-CT imaging improves diagnostic accuracy by reducing false-negative or -positive results in planar imaging in the post-therapy scan in patients with DTC. Our findings suggest that neck-thorax SPECT-CT imaging should be incorporated into the routine imaging protocol for detecting the most metastatic sites of DTC.

___

  • 1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. Jama. 2006;295(18):2164-7.
  • 2. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngology–Head & Neck Surgery. 2014;140(4):317-22.
  • 3. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the US, 1985‐1995. Cancer. 1998;83(12):2638-48.
  • 4. Randolph GW, Thompson GB, Branovan DI, Tuttle RM. Treatment of thyroid cancer: 2007—a basic review. International Journal of Radiation Oncology* Biology* Physics. 2007;69(2):S92-S7.
  • 5. Abraham T, Schöder H, editors. Thyroid cancer—indications and opportunities for positron emission tomography/computed tomography imaging. Seminars in nuclear medicine; 2011: Elsevier.
  • 6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-133.
  • 7. Burlison JS, Hartshorne MF, Voda AM, Cocks FH, Fair JR. SPECT/CT localization of oral radioiodine activity: a retrospective study and in-vitro assessment. Nucl Med Commun. 2013 Dec;34(12):1216-22. PubMed PMID: 24128897. Pubmed Central PMCID: PMC3815121.
  • 8. Shapiro B, Rufini V, Jarwan A, Geatti O, Kearfott KJ, Fig LM, et al., editors. Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131-I scans in patients with thyroid cancer. Seminars in nuclear medicine; 2000: Elsevier.
  • 9. Glazer DI, Brown RK, Wong KK, Savas H, Gross MD, Avram AM. SPECT/CT evaluation of unusual physiologic radioiodine biodistributions: pearls and pitfalls in image interpretation. Radiographics. 2013;33(2):397-418.
  • 10. Kohlfuerst S, Igerc I, Lobnig M, Gallowitsch H, Gomez-Segovia I, Matschnig S, et al. Posttherapeutic 131I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. European journal of nuclear medicine and molecular imaging. 2009;36(6):886.
  • 11. Ciappuccini R, Heutte N, Trzepla G, Rame JP, Vaur D, Aide N, et al. Postablation (131)I scintigraphy with neck and thorax SPECT-CT and stimulated serum thyroglobulin level predict the outcome of patients with differentiated thyroid cancer. Eur J Endocrinol. 2011 Jun;164(6):961-9. PubMed PMID: 21471170.
  • 12. Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008 Dec;49(12):1952-7. PubMed PMID: 18997044.
  • 13. Hassan FU, Mohan HK. Clinical Utility of SPECT/CT Imaging Post-Radioiodine Therapy: Does It Enhance Patient Management in Thyroid Cancer? Eur Thyroid J. 2015 Dec;4(4):239-45. PubMed PMID: 26835427. Pubmed Central PMCID: PMC4716421.
  • 14. Barwick TD, Dhawan RT, Lewington V. Role of SPECT/CT in differentiated thyroid cancer. Nucl Med Commun. 2012 Aug;33(8):787-98. PubMed PMID: 22669053.
  • 15. Grewal RK, Tuttle RM, Fox J, Borkar S, Chou JF, Gonen M, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010 Sep;51(9):1361-7. PubMed PMID: 20720058.
  • 16. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167-214.
  • 17. Edge S, Byrd D, Compton C, Fritz A, Greene F. Trotti A, editors: AJCC cancer staging manual. New York: Springer. 2010.
  • 18. Wong KK, Sisson JC, Koral KF, Frey KA, Avram AM. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. AJR Am J Roentgenol. 2010 Sep;195(3):730-6. PubMed PMID: 20729453.
  • 19. Barwick T, Murray I, Megadmi H, Drake WM, Plowman PN, Akker SA, et al. Single photon emission computed tomography (SPECT)/computed tomography using Iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. European journal of endocrinology. 2010;162(6):1131-9.
  • 20. Wang H, Fu H-L, Li J-N, Zou R-J, Gu Z-H, Wu J-C. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clinical imaging. 2009;33(1):49-54.
  • 21. Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. American journal of roentgenology. 2008;191(6):1785-94.
  • 22. Aide N, Heutte N, Rame J-P, Rousseau E, Loiseau C, Henry-Amar M, et al. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation 131I scintigraphy for thyroid cancer. The Journal of Clinical Endocrinology & Metabolism. 2009;94(6):2075-84.
  • 23. de Pont C, Halders S, Bucerius J, Mottaghy F, Brans B. 124I PET/CT in the pretherapeutic staging of differentiated thyroid carcinoma: comparison with posttherapy 131I SPECT/CT. European journal of nuclear medicine and molecular imaging. 2013;40(5):693-700.
  • 24. Oh J-R, Byun B-H, Hong S-P, Chong A, Kim J, Yoo S-W, et al. Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer. European journal of nuclear medicine and molecular imaging. 2011;38(8):1459-68.
  • 25. Menges M, Uder M, Kuwert T, Schmidt D. 131I SPECT/CT in the follow-up of patients with differentiated thyroid carcinoma. Clinical nuclear medicine. 2012;37(6):555-60.
  • 26. Salvatori M, Perotti G, Villani MF, Mazza R, Maussier ML, Indovina L, et al. Determining the appropriate time of execution of an I-131 post-therapy whole-body scan: comparison between early and late imaging. Nuclear medicine communications. 2013;34(9):900-8.
  • 27. Mustafa M, Kuwert T, Weber K, Knesewitsch P, Negele T, Haug A, et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. European journal of nuclear medicine and molecular imaging. 2010;37(8):1462-6.
  • 28. Sergieva S, Robev B. 131I SPECT-CT imaging in management of differentiated thyroid carcinoma (DTC). Journal of Nuclear Medicine. 2016;57(supplement 2):1517-.