UZUNLAMASINA HAREKET KAPSAMINDA İRTİFA KİLİTLEME UÇUŞ KONTROL SİSTEMİ TASARIMI

Bu makale, yüksek hızlı varsayımsal bir uçak için “İrtifa-Kilitleme Kontrolcü”sünün geleneksel uygulamasını göstermektedir. Sistem için “Kararlılık Arttırma Sistemi (SAS)” olarak adlandırılan statik kararlılık çalışılmıştır. Kararlılık koşulları analiz edilmiş ve uçağın uzunlamasına hareketi üzerinden uygun kontrolcü tasarımı geliştirilmiştir. Kontrolcü, uzunlamasına hareket denklemlerinin lineerleştirilmesi ile birlikte tasarlanmış ve performans sorunu için incelenmiştir. Kontrolcü tasarımı, genel uçuş sistemi için iyi bir yaklaşım elde etmek adına optimize edilmiştir. Kontrolcü katsayılarını elde etmek için Root-Locus yöntemi kullanılmıştır. Kontrolcü iki bölüme ayrılmıştır: yunuslama hareketi parametreleri ve açıları ile ilgilenen iç kontrol döngüsü ve uçağın dikey hareketindeki irtifa referansı ve uçuş-yolu açısı ile ilgilenen dış kontrol döngüsüdür. Simülasyonlar, analizler ve sonuçlar MATLAB/Simulink programında geliştirilmiştir. Nihai sonuçlar keşfedilmiş ve MATLAB/Simulink üzerinden ifade edilmiştir.

ALTITUDE-HOLD FLIGHT CONTROL SYSTEM DESIGN FOR LONGITUDINAL MOTION

This article proposes the conventional implementation of a “Altitude-Hold Controller” for a high speed hypothetical aircraft. The static stability, which is called as Stability Augmentation System (SAS), is studied for the system. The stability conditions are analyzed and suitable controller design is developed over the longitudinal motion. The controller is designed by linearizing the longitudinal equation of motions and it is studied for performance issue. The controller design is optimized in order to get a good approximation for the overall flight system. The Root-Locus method is used to get the controller coefficients. The controller is divided into two sections which are; the inner loop that deals with the pitching motion parameters and the outer loop that deals with the altitude reference, flight-path angle on the vertical motion of the aircraft. The simulations, analysis and results are developed in MATLAB/Simulink program. The final results are discovered and expressed over the MATLAB/Simulink.

___

  • Blakelock, J.H., (1991), Automatic Control of Aircraft and Missiles, A Wiley-Interscience Publication, 669, Canada.
  • Gleen, B., (1978), Flight Experience with Altitude Hold and Mach Hold Autopilots on the YF-12 Aircraft at Mach 3, NASA Flight Research Center Edwards, CA, United States.
  • Lee, D., (2020), “Angle-of-Attack Command Longitudinal Control for Supersonic Advanced Trainer Aircraft”, International Journal of Aeronautical and Space Sciences, 22, 120–128.
  • McLean, D., (1990), Automatic Flight Control Systems, Prentice Hall International, 610, UK.
  • Steer, A.J., (2001), Flight Control for Advanced Supersonic Transport Aircraft Handling Quality Design, Cranfield University, PhD Thesis,UK.
  • Steer, A.J., (2004), “Supersonic Transport Aircraft Longitudinal Flight Control Law Design”, The Aeronautical Journal, 108(1084), 319-329.