KUSURLU TOPRAK YAPILARININ GENİŞ BANTLI MODELLENMESİ İÇİN İLETİM HATLARI ARASINDAKİ MOD DÖNÜŞÜMÜNÜN TEKRAR İNCELENMESİ

Bu makale, kusurlu toprak yapıları (DGS'ler) için mikroşerit ve yarık hatlar arasında mod dönüşümüne dayanan bir geniş bantlı iletim hattı modeli sunmaktadır. Toprak düzlemindeki kusurlar, yarıklı hat (slot-line) özelliklerine sahip kısa veya açık devre ile sonlandırılmış iletim hatları (İH'ler) olarak modellenmiştir. Mikroşerit hat ile topraklama kusuru arasındaki geçiş, sırasıyla ilki mikroşerit hat ile seri ve ikincisi yarık hatlarla şönt olarak yerleştirilmiş birbirine bağlı gerilim ve akım kaynakları ile modellenmiştir. Önerilen modelde kusurlu yapı üzerinden geçen iki portlu bir mikroşerit hattın tüm ABCD parametresi geometriye bağlı bir analitik ifadeler seti sağlanmaktadır. Bu da, önerilen modelin bilgisayar destekli tasarım programlarına kolayca entegre edilebilmesine olanak sağlamaktadır. Modelin doğruluğu, model sonuçlarının HFSS simülasyonları ve ölçümlerinden alınan sonuçlarla karşılaştırılarak çeşitli kusur şekilleri için doğrulanmıştır.

REVISITING MODE CONVERSION BETWEEN TRANSMISSION LINES FOR WIDE-BAND MODELING OF DEFECTED GROUND STRUCTURES

This paper presents a wide-band transmission line model for defected ground structures (DGSs) based on a mode-conversion between microstrip- and slot-lines. The defects on the ground plane are modeled as short- or open-ended transmission lines (TLs) with slot-line characteristics. The transition between microstrip line and ground defect is modeled with interdependent voltage and current sources, of which the first one is placed in series with the microstrip line, and the latter in-shunt with the slot lines, respectively. A complete set of geometry-dependent analytical expressions for the ABCD parameter of a two-port microstrip line crossing over the defected structure is provided. Therefore, the proposed model can be readily integrated into computer-aided design programs. The model’s accuracy is verified in various defect shapes by comparing its results with those from HFSS simulations and measurements.

___

  • Ahn, D., Park, J.-S., Kim, C.-S., Kim, J., Qian, Y., & Itoh, T. (2001). A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 49(1), 86–93. https://doi.org/10.1109/22.899965
  • Ansys, (1998). H. F. S. S. “Ansys Inc.”
  • Caloz, C., Okabe, H., Iwai, T., & Itoh, T. (2004). A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microwave and Wireless Components Letters, 14(3), 127–129. https://doi.org/10.1109/LMWC.2003.822564
  • Challal, M., Dehmas, M., Azrar, A., Aksas, R., & Trabelsi, M. (2016). Circuit modeling and EM simulation verification of DGS based low-pass filter employing transmission line model along with microstrip-slotline transitions. MATEC Web of Conferences, 52, 01003. https://doi.org/10.1051/matecconf/20165201003
  • Chul-Soo Kim, Jong-Sik Lim, Sangwook Nam, Kwang-Yong Kang, Jong-Im Park, Geun-Young Kim, & Dal Ahn. (2002, June, 2-7). The equivalent circuit modeling of defected ground structure with spiral shape. IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), 2125–2128. https://doi.org/10.1109/MWSYM.2002.1012290
  • Das, N. K. (1993). Generalized multiport reciprocity analysis of surface-to-surface transitions between multiple printed transmission lines. IEEE Transactions on Microwave Theory and Techniques, 41(6), 1164–1177. https://doi.org/10.1109/22.238542
  • Haw-Jyh Liaw, & Merkelo, H. (1996, May, 28-31). Signal integrity issues at split ground and power planes. Proceedings 46th Electronic Components and Technology Conference, 752–755. https://doi.org/10.1109/ECTC.1996.550491
  • Jahan, N., Baichuan, C., Barakat, A., & Pokharel, R. K. (2020). Utilization of Multi-Resonant Defected Ground Structure Resonators in the Oscillator Feedback for Phase Noise Reduction of K-Band VCOs in 0.18-$\mu$ m CMOS Technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(4), 1115–1125. https://doi.org/10.1109/TCSI.2020.2965007
  • Janaswamy, R., & Schaubert, D. H. (1986). Characteristic Impedance of a Wide Slotline on Low-Permittivity Substrates (Short Paper). IEEE Transactions on Microwave Theory and Techniques, 34(8), 900–902. https://doi.org/10.1109/TMTT.1986.1133465
  • Jong-Sik Lim, Ho-Sup Kim, Jun-Seek Park, Dal Ahn, & Sangwook Nam. (2001). A power amplifier with efficiency improved using defected ground structure. IEEE Microwave and Wireless Components Letters, 11(4), 170–172. https://doi.org/10.1109/7260.916333
  • Jun-Seok Park, Jae-Ho Kim, Jong-Hun Lee, Sang-Hyuk Kim, & Sung-Ho Myung. (2002, June, 02-07). A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter. IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), 417–420. https://doi.org/10.1109/MWSYM.2002.1011644
  • Karmakar, N. C., Roy, S. M., & Balbin, I. (2006). Quasi-static modeling of defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 54(5), 2160–2168. https://doi.org/10.1109/TMTT.2006.873633
  • Khalid, M., Iffat Naqvi, S., Hussain, N., Rahman, M., Fawad, Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications. Electronics, 9(1), 71. https://doi.org/10.3390/electronics9010071
  • Khandelwal, M. K., Kanaujia, B. K., & Kumar, S. (2017). Defected Ground Structure: Fundamentals, Analysis, and Applications in Modern Wireless Trends. International Journal of Antennas and Propagation, 2017, 1–22. https://doi.org/10.1155/2017/2018527
  • Knorr, J. B. (1974). Slot-Line Transitions (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 22(5), 548–554. https://doi.org/10.1109/TMTT.1974.1128278
  • Luo, J., He, J., Wang, H., Chang, S., Huang, Q., & Yu, X.-P. (2018). A 28 GHz LNA using defected ground structure for 5G application. Microwave and Optical Technology Letters, 60(5), 1067–1072. https://doi.org/10.1002/mop.31112
  • Park, J., Park, K., Chang, S., & Ahn, D. (2005, February, 13-15). A New Equivalent Transmission Line Modeling of Dumbbell Type Defected Ground Structure. Proceedings of the 4th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications. Salzburg Austria, 1-5.
  • Pozar, D. M. (2011). Microwave Engineering (4th ed.). John wiley & sons, USA.
  • Sis, S. A., Ustuner, F., & Demirel, E. (2022). EMI Reducing Interdigital Slot on Reference Planes of the PCBs. IEEE Transactions on Electromagnetic Compatibility, 64(1), 219–229. https://doi.org/10.1109/TEMC.2021.3083654
  • Van Nechel, E., Ferranti, F., Rolain, Y., & Lataire, J. (2019, June, 18-21). A Wide-Band Equivalent Circuit Model for Single Slot Defected Ground Structures. IEEE 23rd Workshop on Signal and Power Integrity (SPI), 1–3. https://doi.org/10.1109/SaPIW.2019.8781651
  • Wei, K., Li, J. Y., Wang, L., Xu, R., & Xing, Z. J. (2017). A new technique to design circularly polarized microstrip antenna by fractal defected ground structure. IEEE Transactions on Antennas and Propagation, 65(7), 3721–3725. https://doi.org/10.1109/TAP.2017.2700226
  • Woo, D.-J., Lee, T.-K., & Lee, J. W. (2013). Equivalent circuit model for a simple slot-shaped DGS microstrip line. IEEE Microwave and Wireless Components Letters, 23(9), 447–449. https://doi.org/10.1109/LMWC.2013.2274037
  • Zhong, Y., Yang, Y., Zhu, X., Dutkiewicz, E., Shum, K. M., & Xue, Q. (2017). An on-chip bandpass filter using a broadside-coupled meander line resonator with a defected-ground structure. IEEE Electron Device Letters, 38(5), 626–629. https://doi.org/10.1109/LED.2017.2690283