İSTANBUL İLİNDE YAŞAYAN 7-17 YAŞ ÇOCUKLARDA D-VİTAMİNİ YETERSİZLİĞİNİ ETKİLEYEN RİSK FAKTÖRLERİ

Bu çalışmada D vitamini yetersizliği/eksikliğinin sıklığını etkileyen risk faktörlerine ergenlik dönemlerinin ve obezitenin etkisi araştırıldı. 7-17 yaş arası 123 çocuk (60 kız, 63 erkek) çalışmaya alınmış olup yaş, cinsiyet, kilo, boy, vücut kitle indeksi, ergenlik dönemleri ve günlük yaşam parametreleri kaydedildi. Biyokimyasal parametreler ve D vitamini düzeyleri için açlık kan örnekleri alındı. D vitamini düzeyinin 20 ng/ml'den düşük olması D vitamini eksikliği, 20- 30 ng/ml arası değerler D vitamini yetersizliği olarak tanımlandı. Tanner'ın ergenlik sınıflamasına göre, çocuklar üç gruba ayrılarak incelendi; prepubertal (Tanner's 1), midpubertal (Tanner's 2-4) ve post-pubertal (Tanner's 5). Ayrıca vücut kitle indeksi 30 ve üzeri olanlar obezite grubuna alındı. Çalışmamızda D vitamini yetersizlik oranı % 39 (N.48) iken, eksiklik oranı %39,8 (N.49) olarak bulunmuştur. Kızlar ile erkekler arasında farklılık saptanmadı. En önemli risk faktörleri; kış mevsimi, teknolojik alet kullanım süresinin artması, açık havada sportif aktivite ile güneş ışığına maruz kalma süresinin kısalması olarak belirlenmiştir. Teknolojik alet kullanım oranı ve süresi, erkeklerde belirgin olarak daha fazla idi. Vit-D düzeyleri ile açık havada sportif aktivite, güneş ışığına maruz kalma arasında pozitifkorrelasyon var iken, teknolojik alet kullanım süresiyle negatif korrelasyon saptanmıştır. Ergenlik dönemleri ile vitamin D eksikliği arasında bağlantı saptanmadı, ancak her iki cinsiyet için de vitamin D eksikliğinin en sık görüldüğü dönem postpubertal dönem idi. Erkeklerde ergenlik ilerledikçe artan teknoloji kullanımı artmaktaydı. Obezite ile vitamin D eksikliği/ yetersizliği arasında bağlantı bulunamadı. Ayrıca, kalsiyum, fosfor, ALP değerleri için gruplar arasında istatistiksel farklılık saptanmadı. Günümüzde D vitamini eksikliği güneşli ülkelerde bile yaygın bir sağlık sorunu olmaya devam etmektedir. Risk faktörlerinin belirlenmesi, buna göre sağlık politikalarının planlanması ve hem ailelere hem de ergenlere farkındalık eğitimleri verilmesinin gerekliliğini göstermektedir.

RISK FACTORS AFFECTING VITAMIN D DEFICIENCY IN CHILDREN AGED 7-17 LIVING IN ISTANBUL

In this study, the effects of adolescence and obesity on the risk factors affecting the frequency of vitamin D insufficiency/deficiency were investigated. 123 children (60 girls, 63 boys) between the ages of 7-17 were included in the study and age, gender, weight, height, body mass index, pubertal stages and daily life parameters were recorded. Fasting blood samples were taken for biochemical parameters and vitamin D levels. A vitamin D level lower than 20 ng/ml was defined as vitamin D deficiency, and values between 20-30 ng/ml were defined as vitamin D insufficiency. According to Tanner's classification of adolescence, children were divided into three groups; prepubertal (Tanner's 1), midpubertal (Tanner's 2-4) and post-pubertal (Tanner's 5). In addition, those with a body mass index of 30 and above were included in the obesity group. In our study, the rate of vitamin D deficiency was found to be 39% (N.48), while the rate of deficiency was found to be 39,8% (N.49). No difference was found between girls and boys. The most important risk factors are the winter season, the increase in the use of technological devices, the shortening of the time of outdoor sportive activity and exposure to sunlight. The rate and duration of use of technological devices were significantly higher in males. While there was a positive correlation between Vit-D levels and outdoor sports activity and exposure to sunlight, a negative correlation was found with the duration of use of technological devices. No correlation was found between puberty and vitamin D deficiency, but the most common period of vitamin D deficiency for both sexes was the postpubertal period. As adolescence progressed in boys, the use of technology increased. No correlation was found between obesity and vitamin D deficiency/insufficiency. In addition, there was no statistical difference between the groups for calcium, phosphorus and ALP values. Today, vitamin D deficiency continues to be a common health problem even in sunny countries. It shows the necessity of determining risk factors, planning health policies accordingly, and providing awareness training to both families and adolescents.

___

  • Absoud, M. et al. (2011) ‘Prevalence and predictors of vitamin D insufficiency in children: A great britain population based study’, PLoS ONE, 6(7). doi: 10.1371/journal.pone.0022179.
  • Alemzadeh, R. et al. (2008) ‘Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season’, Metabolism: Clinical and Experimental, 57(2), pp. 183–191. doi: 10.1016/j.metabol.2007.08.023.
  • Bischoff-Ferrari, H. A. et al. (2006) ‘Estimation of optimal serum concentrations of 25- hydroxyvitamin D for multiple health outcomes’, American Journal of Clinical Nutrition. Am J Clin Nutr, pp. 18–28. doi: 10.1093/ajcn/84.1.18.
  • Bundak, R. et al. (2006) ‘Body mass index references for Turkish children’, Acta Paediatrica, International Journal of Paediatrics, 95(2), pp. 194–198. doi: 10.1080/08035250500334738.
  • Ross AC, Taylor CL, Yaktine AL, Del Valle HB, for et al. (2011) Dietary Reference Intakes for Calcium and Vitamin D, Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press (US). doi: 10.17226/13050.
  • Dong, Y. et al. (2010) ‘Low 25-hydroxyvitamin D levels in adolescents: Race, season, adiposity, physical activity, and fitness’, Pediatrics, 125(6), pp. 1104–1111. doi: 10.1542/peds.2009-2055.
  • Fiamenghi, V. I. and Mello, E. D. de (2021) ‘Vitamin D deficiency in children and adolescents with obesity: a meta-analysis’, Jornal de Pediatria. Elsevier, pp. 273–279. doi: 10.1016/j.jped.2020.08.006.
  • Ganji, V. et al. (2011) ‘Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25- hydroxyvitamin D data from NHANES 2001- 2006’, American Journal of Clinical Nutrition, 94(1), pp. 225–233. doi: 10.3945/ajcn.111.013516.
  • González-Gross, M. et al. (2012) ‘Vitamin D status among adolescents in Europe: The Healthy Lifestyle in Europe by Nutrition in Adolescence study’, British Journal of Nutrition, 107(5), pp. 755–764. doi: 10.1017/S0007114511003527.
  • Holick, M. F. (2007) ‘Medical progress: Vitamin D deficiency’, New England Journal of Medicine, 357(3), pp. 266–281. doi: 10.1056/NEJMra070553.
  • Holick, M. F. (2009) ‘Vitamin D Status: Measurement, Interpretation, and Clinical Application’, Annals of Epidemiology. Elsevier, pp. 73–78. doi: 10.1016/j.annepidem.2007.12.001.
  • Lee, J. Y., So, T.-Y. and Thackray, J. (2013) ‘A Review on Vitamin D Deficiency Treatment in Pediatric Patients’, The Journal of Pediatric Pharmacology and Therapeutics, 18(4), pp. 277– 291. doi: 10.5863/1551-6776-18.4.277.
  • Misra, M. et al. (2008) ‘Vitamin D deficiency in children and its management: Review of current knowledge and recommendations’, Pediatrics. Pediatrics, pp. 398–417. doi: 10.1542/peds.2007- 1894.
  • Munns, C. et al. (2006) ‘Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: A consensus statement’, Medical Journal of Australia, 185(5), pp. 268–272. doi: 10.5694/j.1326- 5377.2006.tb00558.x.
  • Olson, M. L. et al. (2012) ‘Vitamin D deficiency in obese children and its relationship to glucose homeostasis’, Journal of Clinical Endocrinology and Metabolism, 97(1), pp. 279–285. doi: 10.1210/jc.2011-1507.
  • Pekkinen, M. et al. (2012) ‘Vitamin D is a major determinant of bone mineral density at school age’, PLoS ONE, 7(7). doi: 10.1371/journal.pone.0040090.
  • Peterson, C. (2015) ‘Vitamin D deficiency and childhood obesity: interactions, implications, and recommendations’, Nutrition and Dietary Supplements, 7, p. 29. doi: 10.2147/nds.s52024.
  • Rockell, J. E. et al. (2005) ‘Season and ethnicity are determinants of serum 25-hydroxyvitamin D concentrations in New Zealand children aged 5- 14 y’, in Journal of Nutrition. J Nutr, pp. 2602– 2608. doi: 10.1093/jn/135.11.2602.
  • Smotkin-Tangorra, M. et al. (2007) ‘Prevalence of vitamin D insufficiency in obese children and adolescents’, Journal of Pediatric Endocrinology and Metabolism, 20(7), pp. 817–823. doi: 10.1515/JPEM.2007.20.7.817.
  • Stein, E. M. et al. (2006) ‘Serum 25- hydroxyvitamin D concentrations in girls aged 4- 8 y living in the southeastern United States’, The American journal of clinical nutrition, 83(1), pp. 75–81. doi: 10.1093/AJCN/83.1.75.
  • Turer, C. B., Lin, H. and Flores, G. (2013) ‘Prevalence of vitamin D deficiency among overweight and obese us children’, Pediatrics, 131(1). doi: 10.1542/peds.2012-1711.
  • Vierucci, F. et al. (2013) ‘Vitamin D status and predictors of hypovitaminosis D in Italian children and adolescents: A cross-sectional study’, European Journal of Pediatrics, 172(12), pp. 1607–1617. doi: 10.1007/s00431-013-2119-z.
  • Weaver, C. M. and Fleet, J. C. (2004) ‘Vitamin D requirements: current and future.’, The American journal of clinical nutrition. Am J Clin Nutr. doi: 10.1093/ajcn/80.6.1735s.
  • Weng, F. L. et al. (2007) ‘Risk factors for low serum 25-hydroxyvitamin D concentrations in otherwise healthy children and adolescents’, American Journal of Clinical Nutrition, 86(1), pp. 150–158. doi: 10.1093/ajcn/86.1.150.
  • Zerwekh, J. E. (2008) ‘Blood biomarkers of vitamin D status’, American Journal of Clinical Nutrition, 87(4). doi: 10.1093/ajcn/87.4.1087s.