Bilirubin Damgalı Kitosan-Agaroz Biyomateryalinin Sentezi, Karakterizasyonu ve Bilirubin Uzaklaştırılmasında Kullanımı

Amaç: Bilirubin damgalı kitosan-agaroz biyomateryalinin; sentezi, karakterizasyonu ve bilirubin uzaklaştırılmasında kullanımının önemini tespit etmek amacıyla yapılmıştır. Yöntem: Kitosan ve agaroz doğal polimerleri materyal olarak seçilmiştir. Bilirubin damgalı kitosan-agaroz biyomateryalinin bilirubin uzaklaştırma kapasitesinin belirlenmesi için insan plazması kullanılmıştır. Bulgular: Bilirubin uzaklaştırılması için pH 7.0, sıcaklık 37oC ve başlangıç bilirubin konsantrasyonu 40 mg/g optimum şartlar olarak belirlenmiştir. NaCl konsantrasyonunun arttırılması ile bilirubin için iyonik şiddetin azaldığı tespit edilmiştir. Sonuç: Etkileşim öncesi ve sonrasında alınan serum örneklerinde bilirubin analizi gerçekleştirildi ve moleküler damgalı kitosan-agaroz biyomateryalleri ile %87’lik bir uzaklaştırma oranı elde edildi. Sulu çözeltilerden bilirubin adsorpsiyonu ile insan plazmasından bilirubin adsorpsiyonu kıyaslandığında, plazmada adsorpsiyon kapasitesinin çok az miktarda azaldığı gözlendi.

Bilirubin Impriting Chitosan-Agarose Biomaterial Synthesis, Characterization and Use to Bilirubin Removal

Aim: This study was conducted to synthesize and characterize bilirubin imprinted chitosan-agarose biomaterial and to determine its significance on bilirubin removal. Method: Natural Chitosan and agarose polymers were chosen as materials. Human plasma was used to determine the capacity of bilirubin imprinted chitosan-agarose biomaterial for bilirubin removal. Findings: The optimum conditions for bilirubin removal were determined as pH 7.0 at 37oC with a starting concentration of 40 mg/g. An increase in NaCl concentration was shown to decrease the ionic strength for bilirubin.  Conclusion: Bilirubin analysis was performed on serum samples taken before and after the interaction. A suspension rate of 87%  was obtained by using molecular imprinted chitosan-agarose biomaterials. When bilirubin adsorption from aqueous solutions was compared to the adsorption of bilirubin from human plasma it was observed that the adsorption capacity of plasma was slightly decreased.

___

  • Deng J, Nian Y, Syu M. Investigation of binding specificity of PMAA toward α-bilirubin. In: The 1st imprinted International Meeting on Microsensors and Microsystems; January, 12-14, 2003; National Cheng Kung University, Tainan, Taiwan.
  • Syu MJ, Deng JH, Nian YM, Chiu TC, Wu AH. Chiu binding specificity of alpha-bilirubin-imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) toward alpha-bilirubin. Biomaterials. 2005;26(22):4684-4692.
  • Kwok AY, Qiao GG, Solomon DH. Synthetic hydrogels 3. Solvent effects on poly (2-hydroxyethyl methacrylate) networks. Polymer. 2004;45(12):4017-4027.
  • Ma Q, Wooley KL. The preparation of t-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. Polymer Chemistry. 2000;38(S1):4805-4820. doi: 10.1002/1099-0518(200012)38:1+<4805::AID-POLA180>3.0.CO;2-O.
  • Asayama S, Kawakami H, Nagaoka S. Design of a poly (L-histidine)-carbohydrate conjugate for a new pH-sensitive drug carrier. Polymers for Advanced Technologies. 2004;15(8):439–444. doi: 10.1002/pat.493.
  • Yang Z, Si S, Fung Y. Bilirubin adsorption on nanocrystalline titania films. Thin Solid Films. 2007;515(7-8):3344–3351. doi: http://dx.doi.org/10.1016/j.tsf.2006.09.018.
  • Yurdakök M. Hiperbilirubinemide ışık ve ilaç tedavisi. Katkı Pediatri Dergisi. 1995;(5):725-733.
  • Trotta F, Baggiani C, Luda MP, Drioli E, Massari T. A molecular imprinted membrane for molecular discrimination of tetracycline hydrochloride. Journal of Membrane Science. 2005;254(1–2):13-19. doi: https://doi.org/10.1016/j.memsci.2004.11.013.
  • Baydemir G, Bereli N, Andaç M, Say R, Galaev IY, Denizli A. Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloids and Surfaces B: Biointerfaces. 2009;68(1):33-38.
  • Denizli A, Kocakulak M, Pişkin E. Specific sorbents for bilirubin removal from human plasma: Congo red-modified poly (EGDMA/HEMA) microbeads. Applied Polymer Science. 1998;68(3):373–380.
  • Demirci G, Doğaç Yİ, Teke M. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): An active enzyme targeted and efficient method. J Mol Recognit. 2015;28(11):645-650. doi: 10.1002/jmr.2475.
  • Derazshamshir A, Baydemir G, Yılmaz F, Bereli N, Denizli A. Preparation of cryogel columns for depletion of hemoglobin from human blood. Artificial Cells, Nanomedicine and Biotechnology. 2016;44(3):792-799. doi: 10.3109/21691401.2015.1129623.
  • Yavuz H, Say R, Denizli A. Iron removal from human plasma based on molecular recognition using imprinted beads. Materials Science and Engineering: C. 2005;25(4):521-528. doi: https://doi.org/10.1016/j.msec.2005.04.005.
  • McClure CD, Schiller NL. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. Journal of Leukocyte Biology. 1992;51(2):97-102.