OPTIMUM SPACING BETWEEN HORIZONTAL METAL HYDRIDE (MH) HYDROGEN STORAGE TANKS INTEGRATED WITH FUEL CELL POWER SYSTEM IN NATURAL CONVECTION

Mevcut araştırma doğal taşınımla ısıtılan metal hidrid tankların yakıt piline sağlaması gereken Hidrojen kapasitesini incelemektedir. Deşarj işleminde, tanklar arasındaki optimum aralığı tespit etmek için, farklı konfigürasyonlarda teorik ve sayısal analizler yapılmıştır. H/D=3, 5 ve 10 için analizler yapılmıştır. Bu üç konfigürasyon, H/D ve aralığa bağlı olarak, farklı sayıda tanktan meydana gelmektedir. Metal hidrid olarak AB5 tipi LaNi5 seçilmiştir. Analizlerde doğal taşınım ve MH in reaksiyon kinetikleri hesaba katılmıştır. Aralık, maksimum ısı transferini sağlayacak şekilde uygun bağıntılarla hesaplanmıştır. Sonuçlar, maksimum Nusselt değeri için tanklar arasında optimum bir aralık olduğunu göstermiştir. H/D nin artması veya Rayleigh sayısının azalması ile optimum aralık değeri artmaktadır. Ayrıca, Rayleigh sayısının artması ile optimum aralık %20 den fazla artmaktadır. Bu sonuçlar göstermiştir ki, optimum aralık denge MH denge basıncının ve H/D nin artması ile artacaktır

DOĞAL TAŞINIM ORTAMINDA YAKIT PİLİ GÜÇ SİSTEMİ İLE ENTEGRE YATAY METAL HİDRİD (MH) TANKLAR ARASINDAKİ OPTİMUM ARALIK

Present investigation examines the ability of metal hydride storage systems to supply hydrogen to a fuel cell, when the metal hydride tanks are heated by natural convection. To determine optimum spacing of horizontal MH tanks in desorption process, theoretical and numerical analysis is presented to compare different storage tank configurations. Three configurations are analyzed: storage cases with H/D=3, 5 and 10 (array height H, cylinder diameter D). Each of the three configuration had different number of cylinders in the array depending on the H/D and spacing between the cylinders. As MH alloys, AB5 type alloy (LaNi5) is selected. The analysis takes into account the effect of external natural convection heat transfer and reaction kinetics of MH. The spacing is calculated by maximizing the heat transfer by means of accurate correlations. The results of this study reveal that there exists a distance between the MH tanks for which the Nusselt number is maximum. By increasing H/D or decreasing the Rayleigh number, the optimal spacing will increase. Moreover by increasing Rayleigh numbers optimum spacing will increase more than 20%. These results show the optimum spacing in a given volume increase with the increasing equilibrium pressure and H/D ratio.

___

  • Bejan A., 1984, Convection Heat Transfer, Wiley, New York.
  • Bejan A., Fowler A. J., Stanescu G.J., 1995, the Optimal Spacing between Horizontal Cylinders in a Fixed Volume Cooled By Natural Convection, Int. J. Heat and Mass Trans., 38, 2047- 55.
  • Chung C.A. and Ho C. J., 2009, Thermal–Fluid Behavior Of The Hydriding And Dehydriding Processes in a Metal Hydride Hydrogen Storage Canister, Int. J. Hydrogen Energy, 34, 4351–64.
  • Dogan A., Akkus S. and Baskaya S., 2012, Numerical Analysis Of Natural Convection Heat Transfer From Annular Fins on a Horizontal Cylinder, J. Thermal Science and Technology, 32, 31-41.
  • Førde T., Eriksen J., Pettersen AG. and Vie PJS., 2009, Thermal Integration of a Metal Hydride Storage Unit and a PEM Fuel Cell Stack, Int. J. Hydrogen Energy, 34, 6730-9.
  • Guizzi GL., Manno M. and De Falco M., 2009, Hybrid Fuel Cell-Based Energy System with Metal Hydride Hydrogen Storage for Small Mobile Applications, Int. J. Hydrogen Energy, 34, 3112-24.
  • Hilali I., 2012, On the Optimum Sizing of Metal Hydride Tank Filled AB2 Type Alloy, J. Renewable and Sustainable Energy, 4, 033121.
  • Incropera Frank P., 2007, Fund. of Heat and Mass Transfer (Sixth ed.), Wiley, New York.
  • Jiang Z. R. A. and Dougal A. D., 2005, Simulation of Thermally Coupled Metal Hydride Hydrogen Storage and Fuel Cell Systems, J. Power Sources, 142, 92–102.
  • MacDonald BD. and Andrew M. R., 2006, Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks, Int. J. Hydrogen Energy, 31, 1721 – 31. MacDonald BD. and Andrew M. R., 2007,
  • Experimental and Numerical Analysis of Dynamic Metal Hydride Hydrogen Storage Systems, Int. J. Power Sources, 17, 282–293.
  • MacDonald BD. and Andrew M. R., 2006, Thermally Coupled Metal Hydride Hydrogen Storage and Fuel Cell System, J. Power Sources, 161, 346-55.
  • Matos R. S., Vargas J. V. C., Laursen T. A. and Saboya F. E. M., 2001, Optimization Study and Heat Transfer Comparison of Staggered Circular and Elliptic Tubes in Forced Convection, Int. J. Heat and Mass Transfer, 20, 3953-3961.
  • Mellouli S., Askri H. and Dhaou A., 2010, Numerical Simulation of Heat and Mass Transfer in Metal Hydride Hydrogen Storage Tanks for Fuel Cell Vehicles, Int. J. Hydrogen Energy, 35, 1693–1705.
  • Melnichuk M., Silin N. and Peretti H.A., 2009, Optimized Heat Transfer Fin Design for a MetalHydride Hydrogen Storage Container, Int. J. Hydrogen Energy, 34, 3417–24.
  • Muthukumar P. and Venkata R. S., 2009, Numerical Simulation of Coupled Heat and Mass Transfer in Metal Hydride-Based Hydrogen Storage Reactor, J. Alloys and Compounds, 472, 466–472.
  • Phate A. K. and Maiya S. S., 2007, Simulation of Transient Heat and Mass Transfer during Hydrogen Sorption in Cylindrical Metal Hydride Beds, Int. J. Hydrogen Energy, 32, 1969–81.
  • Raju M. and Kumar S., 2012, Optimization of Heat Exchanger Designs in Metal Hydride Based Hydrogen Storage Systems, Int. J. Hydrogen Energy, 37, 2767– 2778.
  • Sadeghipour M. S. and Pedram R., 2001, Natural Convection from a Confined Horizontal Cylinder: the Optimum Distance between the Confining Walls, J. Heat and Mass Transfer, 44, 367-74.
  • Sandrock G., 1999, A Panoramic Overview of Hydrogen Storage Alloys From a Gas Reaction Point of View, J. Alloys and Compounds, 29, 877–888.
  • Ye J., Jiang L., Li Z., Liu X. and Wang S., 2010, Numerical Analysis of Heat and Mass Transfer during Absorption of Hydrogen in Metal Hydride Based Hydrogen Storage Tanks, Int. J. Hydrogen Energy, 35, 8216–24.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ