EFFECT OF SPOILERS TO PRESSURE DISTRIBUTION ON BUILDING ROOF SURFACES

Bu çalışmada, 15° eğimli beşik çatılı bir bina modelinin çatısı üzerinde emme etkisinin kritik olduğu bölgelere yerleştirilen spoiler benzeri akış yönlendirici elemanların çatı yüzey basınç dağılımları üzerindeki etkileri deneysel olarak incelenmiştir. Rüzgar tüneli test bölgesinde oluşturulan atmosferik sınır tabaka içine yerleştirilmiş bina modelinin çatısı üzerinde, farklı çatı-spoiler açıklıkları ve rüzgar doğrultuları için ortalama ve pik yüzey basıncı ölçümleri yapılmıştır. Çatı ön kenarından ayrılan akış, rüzgar tarafındaki çatı yüzeyinde tutunmuş ve çatı sırtından itibaren tekrar ayrılmıştır. Çatı yüzeyleri üzerindeki en kritik negatif basınçlar ayrılmış akış bölgelerinde oluşmuştur. Çatı kenarı ve çatı sırtı boyunca yerleştirilmiş spoiler benzeri elemanların çatı yüzeylerindeki emme yüklerini azaltmada önemli bir etkiye sahip olduğu görülmüştür. Çatı yüzeylerinde basıncın negatif pik değerler aldığı kritik bölgelere yerleştirilen 1 mm açıklığa sahip spoiler benzeri elemanlar, bu bölgelerde meydana gelen emme yükünü %50 ye varan bir oranda azaltmıştır. Spoiler benzeri elemanların çatı üzerindeki kritik emme yüklerini azaltmada yeni bir teknik olarak kullanılabileceği görülmüştür.

BİNA ÇATI YÜZEYLERİ ÜZERİNDEKİ BASINÇ DAĞILIMINA SPOİLERLERİN ETKİSİ

The effect of spoilers placed on the critical regions of 15 sloped gable roof of a building model on the pressure distributions was experimentally investigated in this study. The values of mean and peak pressure coefficients on the roof of the model placed in simulated atmospheric boundary layer were obtained for a variety of roof-to-spoiler apertures and wind directions. Flow separated from the leading edge of the roof attached on the windward side of the roof and re-separated from the roof ridge. The largest negative pressures on the roof surfaces occurred in the separated flow regions. Spoiler elements placed along the roof edges and roof ridge displayed noteworthy effects in the decreasing of suction loads on roof surfaces. Spoilers located with 1 mm aperture on the roof model decreased the suction loads on those regions up to 50%. It was seen that the spoilers can easily be used to reduce critical suction loads on the roofs as a new novel technique.

___

  • Castro I.P. and Robins A.G., 1977, The Flow Around a Surface Mounted Cube in Uniform and Turbulent Streams, J. Fluid Mech., 79, 307-335.
  • Cook N.J., 1990, The Designer's Guide to Wind Loading of Building Structures. Part II: Static Structures. Butterworths, London, UK.
  • Easom G., 2000, Improved Turbulence Models for Computational Wind Engineering, The University of Nottingham, School of Civil Engineering, Ph.D. Thesis.
  • Ginger J.D. and Letchford C.W., 1992, Peak Wind Loads Under Delta Wing Vortices on Canopy Roofs, J. of Wind Eng. and Ind. Aerodyn., 41-44, 1739-1750.
  • Ginger J.D., Reardon G.F. and Whitbread B.J., 2000, Wind Load Effects and Equivalent Pressures on Lowrise House Roofs, Engineering Structures, 22, 638-646.
  • Kareem A. and Lu P.C., 1992, Pressure Fluctuations on Flat Roofs with Parapets, Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 1775-1786.
  • Karimpour A. and Kaye N.B., 2013, Wind Tunnel Measurement of the Parapet Height Role on Roof Gravel Blow-off Rate for Two Dimensional Low Rise Buildings, J. Wind Eng. Ind. Aerod., 114, 38-47.
  • Kawai H. and Nishimura G., 1996, Characteristics of Fluctuating Suction and Conical Vortices on a Flat Roof in Oblique Flow, Journal of Wind Eng. and Industrial Aerodyn., 60, 211- 225.
  • Kind R.J., 1988, Worst Suctions Near Edges of Flat Rooftops with Parapets, Journal of Wind Engineering and Industrial Aerodynamics, 31, 251-264.
  • Kirrane P.P. and Steward S.J., 1978, The Effect of Blockage on Shear Flow in the Wind Tunnel, Department of Aeronautical Engineering, Thesis 221, University of Bristol.
  • Kline S.J. and McClintock F.A., 1953, Describing Uncertainties in Single-Sample Experiments, Mech. Eng., p.3.
  • Kopp G.A., Mans C. and Surry, D., 2005, Wind Effects of Parapets on Low Buildings: Part 2. Structural Loads, J. Wind Eng. Ind. Aerod., 93 (11), 843-855.
  • Kumar K.S. and Stathopoulos T., 1998, Power Spectra of Wind Pressures on Low Building Roofs, Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 665-674.
  • Mans C., Kopp G.A. and Surry D., 2005, Wind Effects of Parapets on Low Buildings: Part 3. Parapet Loads, J. Wind Eng. Ind. Aerod., 93 (11), 857-872.
  • Maskell E.C., 1965, A Theory of the Blockage Effects on Bluff Bodies and Stalled Wings in a Closed Wind Tunnel, ARC R&M No:3400, HMSO, London.
  • Oliveira P.J. and Younis B.A., 2000, On the Prediction of Turbulent Flows Around Full-Scale Buildings, Journal of Wind Engineering and Industrial Aerodynamics, 86, 203-220.
  • Saathoff P.J. and Melbourne W.H., 1989, The Generation of Peak Pressures in Separated/Reattaching Flows, J. Wind Eng. Ind. Aerodyn., 32, 121-134.
  • Sockel H. and Taucher R., 1981, The Influence of a Parapet on Local Pressure Fluctuations, Journal of Wind Engineering and Industrial Aerodynamics, 8, 31-38.
  • Stathopoulos T., 1982, Wind Pressures on Low Buildings with Parapets, J. Struct. Division - ASCE, 108 (12), 2723-2736.
  • Stathopoulos T. and Baskaran A., 1987, Turbulent Wind Loading of Roofs with Parapet Configuration, Canadian Society for Civil Engineering Annual Conference Proceeding, 570-578.
  • Uematsu Y. and Isyumov N., 1999, Wind Pressures Acting on Low-rise Buildings, J. Wind Eng. Ind. Aerodyn., 82, 1-25.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ