INVESTIGATION ON THE RELATION BETWEEN EXERGY LOSS AND NTU

Bu çalışmada karşıt ve paralel akışlı ısı değiştiricilerinde ekserji kaybı ve ısı akısı arasındaki ilişki ve bunların oranları bir boyutsuz sayı ile ifade edilmektedir. Oran şeklindeki bu boyutsuz sayı ile NTU arasındaki ilişki; ısıl kapasiteleri ve giriş sıcaklıklarının fonksiyonu olarak formüle edildi. Parametrik durum ve deneysel çalışmalar ile elde edilen bulgular diyagramlar aracılığıyla irdelenmiştir. Ekserji kayıplarının ısı akısına oranı, azalan ısı kapasitesi oranı ile artmaktadır. Karşıt akışlı ısı değiştiricisinin, aynı ısı değiştiricisi için paralel akışlı ısı değiştiricisinden daha düşük bir ekserji kaybına sahip olduğu tespit edilmiştir. Isı değiştiricisinde akışkana nanopartikül ilave edildiğinde, etkenlik hafifçe artar ve bu nedenle gerekli ısı transfer alanı azalır. Ayrıca yoğuşma veya kaynama durumlarında etkenliğin en üst seviyeye ulaştığı gözlemlenmiştir. Bunun yanında, sıcak ve soğuk akışkanların sıcaklıkları oranının artmasıyla ekserji kayıplarının da arttığı tespit edilmiştir. Bu çalışmada model ve bulgular hem parametrik bir analiz hem de detaylı bir tablo ile ortaya koyulan deneysel veriler ile desteklenmektedir.

EKSERJİ KAYBI VE NTU ARASINDAKİ İLİŞKİNİN İNCELENMESİ

In this study, the relation between exergy losses and heat flux and their ratio are expressed as a dimensionless number for counter and parallel flow heat exchangers. The relation between the proposed dimensionless number and the number of transfer units (NTU) is formulated as a function of heat capacity and inlet temperatures. The findings based on this research are scrutinized via diagrams both as parametric case and experimental studies. The proportion of exergy losses to heat flux increases with a decreasing heat capacity rate. It has been found that the counter-flow heat exchanger has a lower exergy loss than the parallel one for the same heat exchanger. It was seen that when nanoparticles were added in the fluid used in the exchanger, the effectiveness slightly increased and therefore the necessary heat transfer area decreased. It was also observed that under condensing or boiling states the effectiveness reached its top level. Moreover, it was found that for increasing values of the temperature rates of hot and cold fluids the exergy losses also increased. The model and findings are supported both by a parametric analysis and experimental data revealed in a detailed table in the paper.

___

  • Ağra Ö., 2011., Sizing and selection of heat exchanger at defined saving-investment ratio, Applied Thermal Engineering, 31, 727- 734.
  • Alquaity A. B. S., Al-Dini S. Zubair A., S. M., 2013., Effectiveness - NTU relations for parallel flow heat exchangers: The effect of kinetic energy variation and heat leak from outside, International Journal of Refrigeration, 36, 1557-1569.
  • Duangthongsuk W., Wongwises S., 2008., Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid, International Communications in Heat and Mass Transfer 35, 1320-1326.
  • Duangthongsuk W., Wongwises S., 2009., Heat transfer enhancement and pressure drop characteristics of TiO2– water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heat and Mass Transfer 52, 2059-2067.
  • Duangthongsuk W., Wongwises S., 2009., Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Experimental Thermal and Fluid Science 33, 706-714.
  • Duangthongsuk W., Wongwises S., 2010., An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer, Volume 53, 334-344.
  • Duangthongsuk W., Wongwises S., 2010., Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance, Experimental Thermal and Fluid Science 34, 616-624.
  • Guo J., Cheng L., Xu M., 2009., Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm, Applied Thermal Engineering, 29, 2954-2960.
  • Hajabdollahi H., Ahmadi P., Dincer I., 2012., Exergetic optimization of shell-and-tube heat exchangers using NSGA-II, Heat Transfer Engineering, 33:7, 618- 628.
  • Hermes C. J. L., 2012., Conflation of ε-Ntu and EGM design methods for heat exchangers with uniform wall temperature, International Journal of Heat and Mass Transfer, 56, 3812-3817.
  • Incropera F.P., DeWitt D.P., 1985., Fundamentals of heat and mass transfer, John Wiley and Sons.
  • Johannessen E., Nummedal L., Kjelstrup S., 2002., Minimizing the entropy production in heat exchange, International Journal of Heat and Mass Transfer, 45, 2649-2654.
  • Kıncay O., Temir G., 1993., Isı değiştiricilerinde ekserji kaybı ile NTU arasındaki ilişki, Termodinamik, 50-52.
  • Mathew B., Hegab H., 2010., Application of effectiveness-NTU relationship to parallel flow microchannel heat exchangers subjected to external heat transfer, International Journal of Thermal Sciences, 40, 76-85.
  • Naphon P., 2011., Study on exergy loss of the horizontal concentric micro-fin tube heat exchanger, International Communications in Heat and Mass Transfer, 38, 229- 235.
  • Nitiapiruk P., Mahian O., Dalkilic A.S., Wongwises S., 2013., Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical model, International Communications in Heat and Mass Transfer 47, 98-104.
  • Pandey S. D., Nema V.K., 2011., An experimental investigation of exergy loss reduction in corrugated plate heat exchanger, Energy, 36, 2997-3001.
  • Paykoc E., Yuncu, H., 1986, Çift borulu eşanjörlerde tersinmezlik, Isi Bilimi Ve Teknigi Dergisi / Journal of Thermal Science and Technology 3, 35-41.
  • Sozen A., 2001., Effect of heat exchangers on performance of absorption refrigeration systems, Energy Conversion and Management 42, 1699-1716.
  • Teke İ., Kıncay O., Temir G, 1993, Determination of economic heat exchanger type according to exergy loss, Energy Systems and Ecology, International Conference, ENCES’93 of ASME 1, 387-391.
  • Teke İ., Ağra Ö., Atayılmaz Ş. Ö., Demir H., 2010., Determining the best type of heat exchangers for heat recovery, Applied Thermal Engineering, 30, 577-583.
  • Wang S., Wen J., Li Y., 2010., An experimental investigation of heat transfer enhancement for a shell and tube heat exchanger, Applied Thermal Engineering, 29 2433-2438.
  • Yilmaz M., Sara O. N., Karslı S., 2001., Performance evaluation criteria for heat exchangers based on second law analysis, Exergy an International Journal 1 (4) 278- 294.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ