Numerical modeling of thermal conductivity of air-plasma-sprayed zirconia with different porosity levels

Gözenekli seramik kaplamanın efektif ısı iletim katsayısı gözeneklilik oranına ve gözeneklerin dağılımına bağlıolarak değişmektedir. Bu nedenle ısı transferi çözümlemelerinde gerçek mikroyapının kullanılması önemli bir roloynamaktadır. Bu çalışmada gerçek mikroyapı resimleri kullanılarak atmosferik plasma spray (APS) kaplamanınefektif ısı iletim katsayısı CFD modeli ile literatürde bulunan Maxwell-Eucken ve EMT analitik ifadeleri kullanılarakhesaplanmıştır. CFD modellemeleri Fluent 6.1.22 kodu kullanılarak yapılmıştır. Numuneler kaplama parametrelerinindeğiştirilmesi ile beş farklı gözeneklilikte elde edilmiştir. Numunelerin gözenekliliği 9% - 31% arasındadeğişmektedir. Analitik ve sonlu hacimler metodundan elde edilen ısı iletim katsayısı değerleri literatürde yer alandeneysel sonuçlar ile karşılaştırılmıştır. Nümerik olarak elde edilen efektif ısı iletim katsayısı değerleri deneyselçalışmalar ile uyum sağlamaktadır. Bu çalışma gözenekli seramik malzemenin efektif ısı iletim katsayısının gerçekmikroyapı resimlerinin kullanılarak elde edilmesinde CFD analizinin kullanılabileceğini göstermektedir. Bu sayede,bu model yüksek maliyetli ve zaman alıcı deneylerden önce ön değer elde etmek amacıyla kullanılabilir.

Faklı gözeneklilik oranlarındaki atmosferik plazma spray zirkonyanın ısı iletim katsayısının nümerik modellemesi

The effective thermal conductivity of a porous ceramic coating depends on porosity and the distribution ofpores. Due to these aspects, the structure of a ceramic coating plays an important role in the analysis of heat transfer.In this study, using real microstructural images, effective thermal conductivities of air plasma sprayed (APS) zirconiacoatings have been calculated via CFD modeling as well as using Maxwell-Eucken and the EMT models. CFDstudies were carried out using FLUENT 6.1.22 code. Samples were produced having five different porosities bychanging the coating parameters. The porosities of the samples were in the interval of 9% - 31%. Results obtainedfrom analytical and finite volume methods have been compared to experimental thermal conductivity data given inthe literature. The numerically calculated effective thermal conductivities are in good agreement with thosedetermined experimentally. This study demonstrates that CFD analysis can be used to predict the effective thermalconductivity of porous ceramic coatings using real digital images. By virtue of this, the model can be used to obtainpreliminary values instead of high cost and time-consuming experiments.

___

  • Alpérine S., Derrien M., Jaslier Y., Mérvel R., Thermal barrier coatings: the thermal conductivity challenge, AGARD Report 823, Canada Communication Group Inc, 1997.
  • Altun O., Changes in the thermal conductivity of thermal barrier coatings, Ph.D. thesis, Eskisehir Osmangazi University, Turkey, 2007.
  • Altun O., Boke Y.E., The Effect of pore shape to the effective thermal conductivity of thermal barrier coatings, ASME Summer Heat Transfer Conference HT2008, HT2008-56171 ASME, Jackonsville, Florida, USA, 2008.
  • Bakker K., Using the finite element method to compute the influence of complex porosity and inclusion structures on the thermal and electrical conductivity, Int. J. Heat Mass Transf. 40, 3503-3511, 1997.
  • Bolot R., Antou G., Montavon G., and Coddet C., A Two-dimension heat transfer model for thermal barrier coating average thermal conductivity computation, Numerical Heat Transfer Part A. 47, 875-898, 2005.
  • Brindley W.J., Miller R.A., Thermal barrier coatings for better engine efficience, Advanced Materials & Processes 8, 29-33, 1989.
  • Cernuschi F., Ahmaniemi S., Vuoristo P., Mäntylä T., Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, Journal of the European Ceramic Society 24, 2657-2667, 2004.
  • Clyne T. W., Golosnoy I. O., Tan J. C., Markaki A. E., Porous materials for thermal management under extreme conditions, Phil. Trans. R. Soc. A. 364, 125- 146, 2006.
  • Dorvaux J.M., Lavigne O., Mérvel R., Poulain M., Renollet Y., Rio C., Modeling the thermal conductivity of thermal barrier coatings, AGARD Report 823, Canada Communication Group Inc, 1997.
  • Demasi-Marcin J. T., Gupta D. K., Protective coatings in the gas turbine engine, Surf. Coat. Technol. 68-69, 1- 9, 1994.
  • Golosnoy I.O., Tsipas S.A., Clyne T.W., An analytical model for simulation of heat flow in plasma-sprayed thermal barrier coatings, Journal of Thermal Spray Technology, 14, 205-214, 2005.
  • Grangjean S., Absi J., Smith D.S., Numerical calculation of the thermal conductivity of porous ceramics based on micrographs, Journal of the European Ceramic Society 26, 2669-2676, 2006.
  • Herman H., Sulit R.A., Thermal Spray Coatings, ASM Handbook Welding, Brazing and Soldering, 2000.
  • Incropera F.P., DeWitt D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Fourth Edition, 1996.
  • Jadhav A.D., Padture N.P., Jordan E.H., Gell M., Miranzo P., Fuller E.R., Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures, Acta Materialia 54, 3343- 3349, 2006.
  • Johner G., Schweitzer K. K., Flame rig testing of thermal barrier coatings and correlation with engine results, J. Vac. Sci. Technol. A3 6, 2516-2524, 1985.
  • Landauer R., The electrical resistance of binary metallic mixtures, Journal of Applied Physiscs, 23, 779-784, 1952.
  • Nait-Ali B., Haberko K., Vesteghem H., Absi J., Smith D.S., Thermal conductivity of highly porous zirconia, Journal of the European Ceramic Society 26, 3567- 3574, 2006
  • Pawlowski L., and Fauchais P., Thermal transport properties of thermally sprayed coatings, Int. Metall. Rev., 31, 271-289, 1992.
  • Portinha A., Teixeira V., Carneiro J., Martins J., Costa M. F., Vassen R., Stoever D., Characterization of thermal barrier coatings with a gradient in porosity, Surf. Coat. Technol. 195, 245-251, 2005.
  • Ravichandran K. S., and An. K., Thermal conductivity of plasma-sprayed monolithic and multilayer coatings of alumina and yttria-stabilized zirconia, J. Am. Ceramic Soc. 82, 673-682. 1999.
  • Rayleigh L., On the influence of obstacle arranged in rectangular order upon the properties of a medium, Phill. Mag. 34, 481-507, 1892
  • Schlichting K.W., Padture N.P., Klemens P.G., Thermal conductivity of dense and porous yttria-stabilized zirconia, Journal of Materials Science 36, 3003-3010, 2001
  • Stark C., Fricke J., Improved heat-transfer models for fibrous insulations, International Journal of Heat and Mass Transfer, 1993, vol. 36, p.617–625.
  • Swaminathan V.P., and Cheruvu N.S., Gas Turbine hot – section materials and -coatings in electric utility applications, In Advanced Materials and Coatings for Combustion Turbines, ASM International, Materials Park, OH-USA, 1994.
  • Taylor R.E., Wang X., Xu X., Thermophysical properties of thermal barrier coatings, Surf. Coat. Technol.. 120-121, 89-95, 1999.
  • Teixeira V., Andritschky M., Fisher W., Bunchkremer H.P., Stöver D., Effects of deposition temperature and thermal cycling on residual stress state in zirkonia based thermal barrier coatings, Surf. Coat. Technol. 120-121, 103-111, 1999.
  • Tucker R.C., Thermal Spray Coatings, ASM Handbook Surface Engineering, Third Edition, 1999.
  • Wang J., Carson J.K., North M.F., Cleland D.J., A new approach to modeling the effective thermal conductivity of heterogeneous materials, Int. J. Heat Mass Transf., 49, 3075-3083, 2006
  • Zhu D., Bansal N.P., Lee K.N., Miller R.A., Thermal conductivity of ceramic thermal barrier and environmental barrier coating materials, NASA Technical Memorandum TM-2001-211122, 2001.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ