Ice thickness measurement method for thermal energy storage unit

Bu çalışmanın amacı, ısıl enerji depolama ünitesindeki katılaşma ara yüzeyinin belirlenmesi için bir ölçüm yönteminin geliştirilmesidir. Faz değişim malzemesinin (FDM) elektriksel iletkenliği katılaşma/erime işleminde önemli oranda değişmektedir. Bu sebeple önerilen ölçüm yöntemi, FDM’nin elektriksel iletkenliğinin gözlenmesini esas almaktadır. Ortam içerisinde birden fazla noktada gözlem yapılabilmesi için özel bir prob tasarlanmış ve ölçüm noktalarından alınan veriler, bir gömülü işlemci vasıtasıyla kaydedilmiş ve bilgisayara aktarılmıştır. Deneysel sonuçlar, geleneksel fotoğraflama yöntemiyle karşılaştırılmıştır. Yöntemin göreceli doğruluğu yaklaşık %3 olarak belirlenmiştir. Bu yöntemin en önemli avantajları, fotoğraflama yönteminde belirli zamanlarda kapağın açılmasından kaynaklanan ısı kazançları yok etmesi ve fotoğraflama yönteminin kullanılamayacağı uygulamalarda, elektronik olarak katılaşma ara yüzeyinin gözlenmesini sağlamasıdır.

Isıl enerji depolama ünitesi için buz kalınlığı ölçüm yöntemi

The aim of this study is to develop a measurement method to determine the solidification front in a thermal energy storage unit. The electrical conductivity of a phase change material (PCM) changes dramatically in solidification/melting process and the proposed measurement method is based on observation of electrical conductivity of PCM. This system utilizes a microprocessor and a multiplexer unit to observe medium via multiple nodes. The experimental results show that the accuracy of this method is nearly 3%, in comparison with the traditional photography method. The most important advantages of this method are elimination of the heat gain, caused by opening a cover in the insulation at specific time periods, compared to the with photography method and ease of observation of solidification fronts electronically which results wider application area where photography method cannot be exploited.

___

  • Daily W., Ramirez A., Electrical resistance tomography, The Leading Edge 23, 438–442, 2004
  • De Jong E., Ballantyne A.K., Cameron D.R., Read D.W.L., Measurement of Apparent Electrical Conductivity of Soils by an Electromagnetic Induction Probe to Aid Salinity Surveys, Soil Sci. Soc. Am. J. 43, 810–812, 1979.
  • Dincer I., Rosen M.A., Thermal Energy Storage: Systems and Applications, John Wiley & Sons, Chichester, 2002.
  • Erek A., Phase change around finned horizontal cylinder: a conjugate problem, PhD Thesis, Dokuz Eylül University, Turkey, 1999.
  • Erek A., İlken Z., Acar M.A., Experimental and numerical investigation of thermal energy storage with a finned tube, International Journal of Energy Resources 29, 283–301, 2005.
  • Farid M.M., Khudhai A.M., Razack S.A.K., Al-Hallaj S., A review on phase change energy storage: materials and applications, Energy Conversion and Management 45, 1597–1615, 2005.
  • Hori T., Kako, H. Hayashi, Relationship between static electrical conductivity and unfrozen water content in food products, Journal of Food Science 47, 1254–1256, 2006.
  • Jay H., Lehr J.K., Water Encyclopedia, John Wiley & Sons, 2005.
  • Knight P.C., Cox G.A., The Electrical Conductivity and Crystal Phase Change in d-Camphor, Physica Status Solidi (b) 37, K39–K41, 2006.
  • Li Q., Li T., Wu J., Electrical Conductivity of Water/Sodium Bis(2-ethylhexyl) Sulfosuccinate/n-Heptane and Water/Sodium Bis(2-ethylhexyl) Phosphate/n-Heptane Systems: The Influences of Water Content, Bis(2-ethylhexyl) Phosphoric Acid, and Temperature, Journal of Colloid and Interface Science 239, 522-527, 2001.
  • Light T.S., Licht S., Bevilacqua A.C., Morash K.R., The fundamental conductivity and resistivity of water, Electrochem. Solid-State Lett. 8, E16-E19, 2005.
  • Mark B., A technique for in situ measurement of the conductivity of water in `triple point of water' cells, Meas. Sci. Technology 10, L33–L36, 1999.
  • http://www.iop.org/EJ/article/0957-0233/10/7/101/mt10007l1.html (Accessed in February 2009)
  • Palleschi G., Biagiotti V., Study of amperometric sensors for the determination of nitrite and ammonia in drinking water, Ph.D. thesis, Università degli Studi di Roma, 2008.
  • PIC16f87x Microcontrollers Data Sheet, Microchip inc. Proakis, J.G., and Manolakis, D.G., Digital signal processing: principles, algorithms and applications, Macmillan, 1996.
  • Shi W., Wang B., Li X., A measurement method of ice layer thickness based on resistance-capacitance circuit for closed loop external melt ice storage tank, Applied Thermal Engineering 25, 1697–1707, 2005.
  • Stillman D.E., Grimm R.E., Laboratory Measurements of the Electrical Properties of Water Ice-Silicate Mixtures and Implications for Dielectric Spectroscopy and Radar on Mars, Seventh International Conference on Mars, 3311-3314, Pasadena, California, 2007.
  • Xiaoping S., Spitzer P., Sudmeier U., Novel method for bulk resistance evaluation in conductivity measurement for high-purity water, Accreditation and Quality Assurance 12, 351-355, 2007.
  • Zalba B., Marin J.M., Cabeza L.F., Mehling H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering 23, 251–283, 2003