Modeling of two-phase flow instabilities in convective in-tube boiling horizontal systems

Bu çalışmanın amacı, düşük frekanslı osilasyonları, bir soğutucu akışkan kullanarak, yatay bir boruda soğutucu akışkanın konveksiyonla kaynamasında elde etmektir. Drift-flux ve homojen modeller kullanılarak, süreklilik, momentum ve enerji denklemlerini nümerik olarak çözerek, sistemin sürekli rejimde basinç düşümü karakteristikleri tayin edilmektedir. Iki-fazlı akım kararsızlıkları, çesitli ısı akıları, akışkan debileri ve çıkışda orifis çaplarının bir fonksiyonu olarak elde edilmektedir. Sayısal metotla elde edilen sürekli ve zamana bağlı rejim sonuçları, deneysel sonuçlar ile karşılaştırılmış ve teori ile deneyler arasında kabul edilebilir sonuçlar elde edilmiştir.

Yatay boru içerisinde konveksiyonla kaynamalı sıstemlerde iki-fazlı akım kararsızlıklarının modellenmesi

This work aims to predict the low frequency oscillations in a horizontal in-tube boiling system using a refrigerant-11 as the working fluid. The steady state system pressure-drop characteristics are determined by a numerical solution of the governing equations as derived from the Drift-flux models. Oscillations were obtained for various heat inputs, flow rates and exit restriction diameters. Both numerical solutions of the steady-state and transient solutions obtained are compared by experimental findings and a satisfactory agreement between the theory and experiments is obtained.

___

  • Bergles, A.E., Review of instabilities in two-phase system, In Two-phase flow and heat transfer (Edited by S. Kakaç, F. Mayinger, T.N. Veziroglu), Hemisphere, Washington, 1977.
  • Boure, J.A., Bergles, A.E., Tong, L.S., Review of twophase flow instabilities, Nuc. Engg & Design 25, 165- 192, 1973.
  • Cao, L., Kakaç, S., Liu, H.T., Sarma, P.K., The effects of thermal non-equilibrium and inlet temperature on two-phase flow pressure-drop type instabilities in an upflow boiling system, Int. J. Thermal Sciences 39, 886-895, 2000.
  • Comakli, O., Karlsi, S., Yilmaz, M., Experimental investigation of two-phase flow instabilities in a horizontal in-tube boiling system, Energy conversion and Management 43, 249-268, 2001.
  • Daleas, R.S., Bergles A.E., Effects of upstream compressibility on subcolled critical heat flux, ASME Preprint 65-HT-67, 1965.
  • Ding, Y., Experimental investigation of two-phase flow phenomena in horizontal convective in-tube boiling systems, Ph.D. Thesis, University of Miami, Coral Gables, Florida, 1993.
  • Ding, Y., Kakac, S., Chen, X.J., Dynamic instabilities of boiling two-phase flow in a single horizontal channel, Int. J. Experimental Heat Transfer, Thermodynamics and Fluid Mechanics 11(4), 327-342, 1995.
  • Gurgenci, H. Verziroglu, T.N., Kakaç, S., Simplified description of two-phase flow instabilities in a vertical boiling channel, Int. J. Heat Mass Transfer 26, 671-679, 1982.
  • Irvine Jr., T.F., Hartnett, J.P., Steam and air tables in SI units, Hemisphere Publishing Corporation, Washington, 1976.
  • Ishii M., Drift-flux model and derivation of kinematic constitutive laws, In Two-phase flow and heat transfer (Edited by S. Kakaç, F. Mayinger, T.N. Veziroglu), Hemisphere, Washington, 1977.
  • Kakac, S., Venkataram, M.R., Gavrilescu, C.O., Modeling of two-phase flow instabilities for in-tube boiling horizontal systems, In Proceedings of ECOS’95, Int. Conf. on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Istanbul, Turkey, 1, 735-741, 1995.
  • Kakaç, S., Veziroglu, T.N., Özboya, T.N., Lee, S.S., Transient boiling flow stabilities in a multi-channel upflow system, Wärme-Stoffübertragung 10, 175-188, 1977.
  • Kakaç, S., Veziroglu, T.N., Padki, M.M., Fu, L.Q., Chen, X.J., Investigation of thermal instabilities in a forced convection upward boiling system, Int. J. Experimental Thermal and Fluid Science 3, 191-201, 1990.
  • Kakaç, S., Bon, B., A review of two-phase flow dynamic instabilities in tube boiling systems, Int. J. Heat Mass Transfer 51, 399-433, 2008.
  • Karsli, S., Yilmaz, M., Comalki, O., The effect of internal surface modifications of flow instabilities in forced convection boiling, Int. J. Heat and Fluid Flow 23, 776-791, 2002.
  • Lahey, R.T. Jr., Drew, D.A., An assessment of the literature related to LWR instability modes, NUREG/CR-1414, 1980.
  • Maulbetsch, J.A.S., Griffith, A study of system-induced instabilities in forced-convection flows with subcooled boiling, MIT Report # 5382-35, 1965.
  • Mayinger, F., Kastner, W., Berechnung Instabilitäten in Zweiphasenströmungen, Chem. Ing. Tech. 40, 1185- 1192, 1968.
  • Padki, M.M., Theoretical modeling of two-phase flow instabilities in a vertical upflow boiling system, Ph.D. dissertation, University of Miami, Coral Gables, Florida, 1990.
  • Padki, M.M., Liu, H.T., Kakaç, S., Two-phase flow pressure-drop type and thermal oscillations, Int. J. Heat and Fluid Flow 12, 240-248, 1991.
  • Stenning, A.H., Instabilities in the flow of a boiling liquid, J. Basic Eng., Trans. ASME, Series D 86, 213, 1964.
  • Venkataraman, M.R., Numerical modeling of two-phase flow instabilities in single-channel horizontal flow systems, M.S. Thesis, University of Miami, Coral Gables, Florida, 1993.
  • Widman, F., Comakli, O., Gavrilescu, C.O., Ding, Y., Kakac, S., The effect of augmented surfaces on twophase flow instabilities in a horizontal system, J. Enhanced Heat Transfer 2 (4), 263-227, 1995.
  • Yadigaroglu, G., Lahey, R.T. Jr., On the various forms of conservation equations in two-phase flow, Int. J. of Multiphase Flow 2, 477-484, 1976.
  • Yadigaroglu, G., Two-phase flow instabilities and propagation phenomena, In Thermohydraulics of Two- Phase Flow Sys. for Ind. Des. & Nucl. Eng. (Edited by J.M. Dehaye, M. Giot, M.L. Riethmuller), Hemisphere, Washington, 1981.
  • Zuber, N., Findlay, J.A., Average volumetric concentration in two-phase flow systems, ASME J. Heat Transfer 87, 453-468, 1965.