MEVCUT BİR BİNARY JEOTERMAL SANTRALİN PERFORMANS GELİŞTİRMESİ VE TERMOEKONOMİK OPTİMİZASYONU: BİR VAKA ÇALIŞMASI

Jeotermal güç santralleri dünyanın birçok yerinde yıllardır kullanılmaktadır. Jeotermal kaynaklardan güç üretmek için farklı termodinamik çevrimler kullanılabilir. Binary çevrim santralleri, nispeten düşük sıcaklıklarda sıvı yoğunluklu kaynaklardan gelen jeotermal suyu kullanır. Bu santraller, düşük kaynama sıcaklığına sahip bir binary iş akışkanı (izobütan, pentan, izopentan, R-114, vb.) ile Rankin çevrimiyle çalışır. Bu çalışmada, mevcut bir binary jeotermal güç santrali ile ilgili bir vaka çalışması yapılmıştır. Türkiye'nin batısındaki 2.7 MW’lık Binary Organik Rankine çevrimi (ORC) tasarımı bir jeotermal santralin termoekonomik performans değerlendirmesi ve optimizasyonu, gerçek santral çalışma verileri kullanılarak yapılmış ve geliştirme potansiyeli tespit edilmiştir. Afyon Jeotermal Enerji Santrali (AFJES), elektrik üretiminde jeotermal enerjinin kullanımı için mevcut çalışma parametreleri kapsamlı bir şekilde kullanılarak bilgisayar ortamında termodinamik olarak modellenmiştir. Santralin jeotermal su sıcaklığı ve kütlesel debisi sırasıyla 110 °C ve 150 kg/s’dir. Santralin enerji ve ekserji verimliliği % 10.4 ve % 29.7 olarak hesaplanmıştır. Jeotermal elektrikten elde edilen gelir 2.880.277 $/yıl ve basit bir geri ödeme süresi ise 3.36 yıl olarak hesaplanmıştır. Santralden üretilen elektriğin ekserjetik maliyeti 0.0233 $/kWh olarak hesaplanmıştır. Santralden üretilen elektriğin optimize edilmiş basit geri ödeme süresi ve ekserji maliyeti sırasıyla 2.87 yıl ve 0.0176 $/kWh olarak hesaplanmıştır.

IMPROVING PERFORMANCE AND THERMOECONOMIC OPTIMIZATION OF AN EXISTING BINARY GEOTHERMAL POWER PLANT: A CASE STUDY

Geothermal power plants have been in operation for decades in many parts of the world. Different thermodynamic cycles can be used for producing power from geothermal resources. Binary cycle plants use the geothermal water from liquid-dominated resources at relatively low temperatures. These plants operate on a Rankine cycle with a binary working fluid (isobutane, pentane, isopentane, R-114, etc.) that has a low boiling temperature. A case study on an existing binary geothermal power plant is available in this study. Thermoeconomic performance evaluation and optimization of 2.7 MW binary organic Rankine cycle (ORC) design geothermal power plant in western Turkey is conducted using actual plant operating data, and potential improvements are identified. Afyon Geothermal Power Plant (AFJES) is thermodynamically modeled in a computer environment using current working parameters in a comprehensive way for the use of geothermal energy in electricity generation. Geothermal water temperature and mass flow rate of the plant are 110°C, and 150 kg/s, respectively. Energy and exergy efficiencies of the plant are calculated as 10.4% and 29.7%. The potential annual revenue of geothermal electricity is calculated to be 2,880,277 $/yr with a simple payback period of 3.36 years. The exergetic cost of the electricity from the plant is calculated as 0.0233 $/kWh. The optimized simple payback period and exergy cost of the electricity generated in the plant is calculated as 2.87 years and 0.0176 $/kWh, respectively.

___

  • Abusoglu, A. and Kanoglu, M., 2008, First and second law analysis of diesel engine powered cogeneration systems, Energy Conversion and Management, 49(8), 2026-2031.
  • Aksoy, N., 2014, Power generation from geothermal resources in Turkey, Renewable Energy, 68, 595-601. Aspen Plus Software, 2015, Aspen Technology Incorporated., Ten Canal Park, Cambridge, MA, USA. www.aspentech.com.
  • Balcilar, M., Ozdemir, Z. A., Ozdemir, H. and Shahbaz, M., 2018, The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method, Renewable Energy, 126, 594-604.
  • Bejan, A., Tsatsaronis, G. and Moran, M.J., 1996, Thermal Design And Optimization. (First Ed.), John Wiley & Sons.
  • Cengel, Y. A. and Boles, M.A., 2015, Thermodynamics: An Engineering Approach, (Seventh Ed.) McGraw-Hill.
  • Coskun, A., Bolatturk, A. and Kanoglu, M., 2014, Thermodynamic and economic analysis and optimization of power cycles for a medium temperature geothermal resource, Energy conversion and management, 78, 39-49.
  • Dhillon, B.S., 2009, Life cycle costing for engineer, (First Ed.), Crc Press.
  • DiPippo, R., 2007, Ideal thermal efficiency for geothermal binary plants, Geothermics, 36(3), 276-285. Yari, M., 2010, Exergetic analysis of various types of geothermal power plants, Renewable Energy, 35(1), 112-121.
  • Ergun, A., Ozkaymak, M., Aksoy Koc, G., Ozkan, S. and Kaya, D., 2017, Exergoeconomic analysis of a geothermal organic Rankine cycle power plant using the SPECO method, Environmental Progress & Sustainable Energy, 36(3), 936-942. F-Chart Software, EES, engineering equation solver. In: F-Chart Software (2019), Internet Website, www.fchart.com/ees/ees.shtml
  • Hanbury, O. and Vasquez, V.R., 2018, Life cycle analysis of geothermal energy for power and transportation: A stochastic approach, Renewable Energy, 115, 371-381.
  • Heberle, F., Hofer, M., Ürlings, N., Schröder, H., Anderlohr, T. and Brüggemann, D., 2017, Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant, Renewable Energy, 113, 494-502.
  • Internet, 2017, www.epdk.org.tr/tr/Dokumanlar/elektrik/yekdem/2017.
  • Kahraman, M., Olcay, A.B. and Sorgüven, E., 2019, Thermodynamic and thermoeconomic analysis of a 21 MW binary type air-cooled geothermal power plant and determination of the effect of ambient temperature variation on the plant performance, Energy Conversion and Management, 192, 308-320.
  • Kanoglu, M., 2002, Exergy analysis of a dual-level binary geothermal power plant, Geothermics, 31(6), 709-724.
  • Kanoglu, M. and Bolatturk, A., 2008, Performance and parametric investigation of a binary geothermal power plant by exergy, Renewable Energy, 33(11), 2366-2374.
  • Kanoglu, M. and Dincer, I., 2009, Performance assessment of cogeneration plants, Energy conversion and management, 50(1), 76-81.
  • Karadas, M., Celik, H. M., Serpen, U. and Toksoy, M., 2015, Multiple regression analysis of performance parameters of a binary cycle geothermal power plant, Geothermics, 54, 68-75.
  • Karimi, S. and Mansouri, S., 2018, A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations, Renewable Energy, 115, 600-619.
  • Kasaei, M. J., Gandomkar, M. and Nikoukar, J., 2017. Optimal management of renewable energy sources by virtual power plant, Renewable Energy, 114, 1180-1188.
  • Korkmaz, E. D., Serpen, U. and Satman, A., 2014, Geothermal boom in Turkey: Growth in identified capacities and potentials, Renewable Energy, 68, 314-325.
  • Kolahi, M. R., Nemati, A. and Yari, M., 2018, Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm, Geothermics, 74, 45-56.
  • Koroneos, C., Polyzakis, A., Xydis, G., Stylos, N. and Nanaki, E., 2017, Exergy analysis for a proposed binary geothermal power plant in Nisyros Island, Greece, Geothermics, 70, 38-46.
  • Leiva-Illanes, R., Escobar, R., Cardemil, J. M. and Alarcón-Padilla, D. C., 2018, Comparison of the levelized cost and thermoeconomic methodologies–Cost allocation in a solar polygeneration plant to produce power, desalted water, cooling and process heat, Energy Conversion and Management, 168, 215-229.
  • Sahin, C., 2016, Electricity Generation With Organic Rankine Cycle (ORC) In Low Temperature Geothermal Field And Modeling Of Afyon Geothermal Electric Production Co., M.S. Thesis, Electrical and Electronics Engineering, Kütahya Dumlupınar University, Turkey.
  • Shokati, N., Ranjbar, F. and Yari, M., 2015, Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study, Renewable Energy, 83, 527-542.
  • Wang, J., Wang, J., Dai, Y. and Zhao, P., 2015, Thermodynamic analysis and optimization of a flash-binary geothermal power generation system, Geothermics, 55, 69-77.
  • Yilmaz, C., 2017, Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings, Geothermics, 70, 239-248.
  • Zheng, B., Xu, J., Ni, T. and Li, M., 2015, Geothermal energy utilization trends from a technological paradigm perspective, Renewable Energy, 77, 430-441.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ