Mathematical modeling of swirling turbulent natural gas combustion in axisymmetric combustors

Doğal gazın türbülanslı yanmasını simule eden bir matematiksel model oluşturulmuştur. Bu modelde, kütle, momentum, basınç ve entalpi için gaz fazı hareket denklemleri, bir dizi eliptik kısmi türevsel denklemlerle tanımlanır. Bu denklemler, sonlu fark denklemler sistemine aktarıldıktan sonra iterasyon tekniğiyle çözümlenirler. Türbülans, standart doğrusal bir k-$varepsilon$ modeli olarak düşünülmüştür. Gaz fazı reaksiyonları, bölgesel anlık dengelerin var olduğu kabul edilerek modellenmiştir. Belirtilen model eksenel simetrik pilot ölçekli fırındaki yanma olayının modellenmesi için kullanılmıştır. Bu hesaplamalarda, akış alanının önemli özellikleri, hız alanı, sıcaklık alanı, ve gaz bileşenleri konsantrasyonu ile gösterilmiştir. Literatürden alınan bir set karşılaştırma verisi yazılan programın doğrulanması için kullanıldı ve hesaplanan sonuçların mevcut deneysel veriye oldukça yakın olduğu görüldü.

Doğal gazın eksenel simetrik fırınlarda türbulanslı yanmasının matematiksel modellenmesi

A mathematical model is developed to numerically simulate the burning of natural gas in an axisymmetric combustor under turbulent swirling flow conditions. The gas phase is modeled in terms of Eulerian continuum conservation equations of mass, momentum, energy and species concentrations, for Favre-averaged quantities. The highly-coupled, non-linear set of elliptical partial differential equations that describe the system are solved by an iterative line-by-line technique after transferring it to a system of finite difference equations. The gas turbulence is described by the standard k-$varepsilon$ two-equation model. The model assumes equilibrium gas-phase chemistry and turbulence-chemistry coupling is modeled using the probability density function and mixture fraction concept. The model involves a staggered grid system for axial and radial velocities, and a relaxation technique for efficient numerical solution of the governing equations. The developed model is used to simulate the combustion processes in an axisymmetric, laboratory-scale combustor. In the model calculations of the significant features of the flow field are illustrated with velocity and temperature fields and gaseous species concentrations. One set of validation data are used for comparison and the computed results agree fairly well with the available experimental data.

___

  • Bilger, R. W., Combustion And Flame, 30, pp. 277-284, 1977.
  • Eaton, A. M., Smoot, L. D., Hill, S. C., Eatough, G. N., Components, formulations, solution, evaluation, and application of comperhensive combustion models, Progress in Energy and Combustion Science, 25(4), pp. 387-436, 1999.
  • Gore, J.P. and Faeth, G. M., Journal of Heat Transfer, 110, pp. 173-181, 1988.
  • Gosman, A. D. and Pun, W. M., Lectures notes for course entitled " Calculation of Recirculating Flows", Report No.HTS/74/2, Department of Mechanical Engineering, Imperial College, London, England, 1974.
  • Hill, S. C. and Smoot L. D., A comprehensive three-dimensional model for simulation of combustion systems: PCGC-3, Energy and Fuel, 7(6), pp. 874-883, 1993.
  • Judeh, R. (Şahin, R), Modeling of Multi-phase combustion Processes, Ph. D. Thesis, Middle East Technical University, Ankara, Turkey, 2001.
  • Khalil, E. E., Spalding, D. B. and Whitelaw J. H., The calculation of local flow properties in two-dimensional furnaces, Intenational Journal of Heat and Mass Transfer, 18, pp. 775-791, 1975.
  • Kuo, K. K., Principles of Combustion^ John Wiley and Sons, New York, N. Y., 1986.
  • Launder, B. E. and Spalding D. B., Mathematical Models of Turbulence, Academic Press, London, 1972.
  • Lilley, D. G. and Rhode D.L., A computer code for swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometries, NASA Contract Report No. 3442, 1982.
  • Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Computational Methods in Mechanics and Thermal Sciences, Hemisphere Publishing Corp., Washington D.C., 1980.
  • Sloan, D. J., Smith, P.J., Smoot, L. D., Modeling of swirl in turbulent flow systems, Progress in Energy and Combustion Science, 12, pp. 163-250, 1986.