Investigation of thermal performance of finned tube evaporator under dry conditions

Bu çalışmada kanatlı borulu bir evaporatörün ısıl performansının analizi kuru şartlar için sayısal olarak yapılmıştır. Havanın ve soğutucu akışkanın değişen özelliklerine göre hava ve soğutucu akışkan tarafındaki taşınım katsayısı hesaplanmıştır. Ayrıca kanat boyunca yüzey sıcaklıkları ve boru yüzey sıcaklıkları hesaplanmıştır. Geçici rejimde evaporatörün toplam ısıl geçirgenliğini (UA) hesaplamak için bir sayısal model oluşturulmuş ve sayısal model Matlab R2010 bilgisayar programında çözülmüştür. Toplam ısıl geçirgenliği, havanın farklı giriş sıcaklıkları ve hızlarında incelenmiştir.Ayrıca kuruluk derecesine göre soğutucu akışkan tarafındaki taşınım katsayısının değişimi incelenmiştir.

Kanatlı borulu evaporatörün kuru şartlar altında ısıl performansının incelenmesi

In this study, analysis of thermal performance of finned tube evaporator under dry conditions has numerically been done. The heat convection coefficient in air and refrigerant sides were calculated by considering their varying properties. In addition, the surface temperature of fin and tubes along the fin were calculated. A numerical model was developed in order to calculate the overall thermal permeability (UA) in transient regime. The numerical model was solved by using Matlab R2010 program. The overall thermal permeability (UA) was examined under different air inlet temperatures and air velocity. In addition, variation of the convection heat transfer coefficient with respect to quality at the refrigerant side was examined.

___

  • Domanski, P. A., Yashar, D. and Kim, M,.Performance of a finned-tube evaporator optimized for different refrigerants and its effect on system efficiency, Int. J. Refrigeration , 28, 820-827, 2005
  • Greco. A. And G.P. Vanoli, Flow- boiling of R22, R134a, R507, R404A and R410A inside a smooth horizantal tube, Int. J. Refrigeration, 28, 872-880, 2005.
  • Jabardo, J.M. S. and Filho ,E.P.B, Convective boiling of halocarbon refrigerants flowing in a horizontal copper tube an experimental study, Exp Therm Fluid Sci, 23, 93-104, 2000.
  • Jung, D., Cho, Y. and Park ,K., Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes, Int J Refrigeration, 27, 25-32, 2004.
  • Kakaç, Soğutma ve Havalandırma Sistemleri için Evapotatörler ve Yoğuşturucular ve Isı Tasarımları, III. Uluslar arası Yapıda Tesisat Bilim ve Teknoloji Sempozyumu, 1998.
  • Lenic, K., Trp, A. and Frankovic, B., Prediction of an effective cooling output of the fin-and tube heat exchanger under frosting conditions, Applied Thermal Engineering ,2009.
  • McQuiston, F.C., Heat mass and momentum transfer data for five plate-fin tube transfer surface,ASHRAE Transactions, Vol. 84, no. 1, pp. 266-293, 1978.
  • McQuiston, F.C, Correlation of heat, mass and momentum transport coefficients for plate-fintube heat transfer surfaces with staggered tubes, ASHRAE Transactions, Vol. 84, no. 1, pp. 294-309, 1978.
  • Mirth, D.R. and Ramadhyani, S., Prediction of coolingcoils performance under condensing conditions, International Journal Heat and Fluid Flow, Vol. 14, pp. 391-400, 1993.
  • Mirth, D.R. and Ramadhyani, S., Correlations for predicting the air-side Nusselt numbers and friction factors in chilled-water cooling coils, Experimental Heat Transfer, Vol. 7, pp. 143-162 1994.
  • Pirompugd, W., Wongwises, S. and Wang, C.C., A tube-by-tube reduction method for simultaneous heat and mass transfer characteristics for plain fin-and-tube heat exchangers in dehumidifying conditions, Heat and Mass Transfer, Vol. 40, pp. 756-765, 2005.
  • Pirompugd, W., Wongwises, S. and Wang, C.C., Simultaneous heat and mass transfer characteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions, Int. J. of Heat and Mass Transfer Vol. 49, pp. 132-143, 2006
  • Seker, D., H. Kartaş and Eğrican, N., Frost formation on fin-and-tube heat exchangers. Part I-Modeling of frost formation on fin-and tube heat exchangers, Int. J. Refrigerat., 27 367–374, 2004.
  • Şeker, D., Kartaş and H., Eğrican, N., Frost formation on fin- and- tube heat exchangers. Part II— Experimental investigation of frost formation on finand- tube heat exchangers, Int. J. Refrigerat. 27, 375– 377, 2004.
  • Tso,C.P., Cheng, Y.C. and Lai, A.C.K., An improved model for predicting performance of finned tube heat exchanger under frosting condition, with frost thickness variation along fin, Applied Thermal Engineering, 26, 111-120, 2006.
  • Wang, C.C., Hsieh, Y.C. and Lin, Y.T., Performance of plate finned tube heat Exchangers under dehumidifying conditions, Journal of Heat Transfer, Vol. 119, pp. 109- 117, 1997.
  • Yan , W.M., Li, H.Y, Wu, Y.J, Lin, J.Y. and Chang , W.R., Performance of finned tube heat exchangers operating under frosting conditions, International Journal of Heat and Mass Transfer Vol 46, pp.871– 877, 2003.
  • Yang, D. K., Lee, K. S. and Song, S. Modeling for predicting frosting behavior of a fin–tube heat exchanger, Int. J. of Heat and Mass Transfer 49,1472- 1479, 2006.