An implicit spectral method for the numerical solution of unsteady flows with an application to rotating disk flow and heat transfer

Bu makalede zamana göre geçişken akışkanların çözümü için bir kapalı sayısal integrasyon yöntemi önerilmiştir. Nümerik metod diske dik dogrultuda Chebyshev dügümleme ve zamanda ise ileri adım tekniklerine dayanmaktadır. Klasik sonlu fark yöntemlerine haiz başlangıç ve sınır koşullarındaki süreksizliklerinden kaynaklanan nümerik salınımlardan uzak olmanın yanında, planlanan metod oldukça dayanıklı, şartsız kararlı, yüksek dogruluga sahip ve uygulaması çok kolay olması gibi avantajlardan yararlanmaktadır. Sonlu fark metodlarının aksine, şimdiki metod farklı dönüşümlere gerek kalmaksızın akış alanını kolayca çözümler. Burada geliştirilen nümerik algoritma klasik zamana baglı ve aniden harekete geçirilen, lakin uzun bir süreç sonunda çok iyi bilinen dönen diskten kaynaklanan von Karman dönen akış problemine uygulanmıştır. Enerji denklemi de bu metodla çözülerek radyal ve tegetsel yüzey sürtünme katsayıları, tork ve diskten ısı transfer oranı gibi çok mühim fiziksel parametreler nümerik olarak elde edilmiş ve bunların zamandan bagımsız degerlerine yakınsadıgı gösterilmiştir.

Zamana bağlı akışkanların sayısal çözümlemeleri için bir kapalı spektral yöntem ve dönen disk akışı ısı transferi problemine uygulaması

An implicit numerical integration scheme is proposed in the present paper for the solution of the transient flows. The numerical method is based on the spectral Chebyshev collocation technique in the direction normal to the disk and forward marching in time. Besides being free of the numerical oscillations caused by the discontinuities between the initial and boundary conditions inherent to the classical finite difference techniques, the devised technique benefits from the advantages of being robust, unconditionally stable, highly accurate and straightforward to implement. Unlike to the finite difference methods, it is also compact in the sense that it resolves the flow field without necessitating further transformations. The numerical algorithm developed here is applied to the classical time-dependent von Karman swirling flow due to a porous rotating disk impulsively set into motion which progresses into the well-known steady state after a long time. The energy equation is also treated by the method and the physical parameters of paramount interest as such the radial and tangential skin-friction coefficients, the torque and the rate of heat transfer from the disk surface are numerically calculated that are shown to approach their steady state counterparts.

___

  • Ames, W. F., Numerical methods in partial differential equations. Academic press, 1977.
  • Appadu, A. R., Dauhoo, M. Z., Rughooputh, S. D. D. V., Control of numerical effects of dispersion and dissipation in numerical schemes for efficient shockcapturing through an optimal courant number. Comput. Fluids, 37, 767–783, 2008.
  • Arefmanesh, A., and Alavi, M. A., A hybrid finite difference-finite element method for solving the 3D energy equation in non-isothermal flow past over a tube. I. J. Num. Meth. Heat Fluid Flow, 18, 50–66, 2008.
  • Attia, H. A., Unsteady mhd flow near a rotating porous disk with uniform suction or injection. Fluid Dynamics Research, 23, 283–290, 1998.
  • Book, D. L., Finite difference techniques for vectorized fluid dynamics calculations. Springer-Verlag, 1981.
  • Britz, D., Qsterby, O., Strutwolf, J., Damping of Crank- Nicolson error oscillations. Computational Biology and Chemistry, 27, 253–263, 2003.
  • Calgaro, C., Deuring, P., Jennequin, D., A preconditioner for generalized saddle point problems: Application to 3D stationary Navier-Stokes equations. Num. Meth. Part. Dif. Eqns., 22, 1289–1313, 2006.
  • Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., Spectral methods in fluid dynamics. Springer- Verlag, 1988.
  • Dehghan, M., Taleei, A., Numerical solution of nonlinear schrödinger equation by using time-space pseudo-spectral method. Num. Meth. Part. Dif. Eqns., 26, 979–992, 2010.
  • Ekaterinaris, J. A., High-order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences, 41, 192–300, 2005.
  • Hossain, M. A., Hossain, A., Wilson, M., Unsteady flow of viscous incompressible fluid with temperaturedependent viscosity due to a rotating disc in the presence of transverse magnetic field and heat transfer. Int. J. Therm. Sci., 40, 11–20, 2001.
  • Huang, P., Abduwali, A., The modified local Crank– Nicolson method for one- and two-dimensional Burgers’ equations. Comp. Math. Appl., 59, 2452–2463, 2010.
  • Jasmine, H. A., Gajjar, J. S. B., Convective and absolute instability in the incompressible boundary layer on a rotating disk in the presence of a uniform magnetic field. Journal of Engineering Mathematics, 52, 337– 353, 2005.
  • Jeong, D., Kim, J., A Crank-Nicolson scheme for the landau–lifshitz equation without damping. J. Comp. Appl. Math., 234, 613–623, 2010.
  • John, V., Knobloch, P., On spurious oscillations at layers diminishing (sold) methods for convection– diffusion equations: Part I – a review. Comp. M. Appl. Mech. Eng., 196, 2197–2215, 2007.
  • Khater, A. H., Temsah, R. S., Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comp. Math. Appl., 56, 1465–1472, 2008.
  • Laizeta, S., Lamballaisa, E., High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy. J. Comput. Phys., 228, 5989–6015, 2009.
  • Ramos, J. I., Numerical methods for nonlinear secondorder hyperbolic partial differential equations. I. timelinearized finite difference methods for 1-D problems. Appl. Math. Comp., 190, 722–756, 2007.
  • Schlichting, H., Boundary-layer theory. McGraw-Hill, 1979.
  • Turkyilmazoglu, M., Linear absolute and convective instabilities of some two- and three dimensional flows. PhD thesis, University of Manchester, 1998.
  • Wade, B. A., Khaliq, A. Q. M., Yousuf, M., Aguiar, J. V., Deininger,R., On smoothing of the Crank–Nicolson scheme and higher order schemes for pricing barrier options. J. Comp. Appl. Math., 204, 144–158, 2007.
  • Wang, Y., Hutter, K., Comparison of numerical methods with respect to convectively dominated problems. I. J. Num. Meth. Fluids, 37, 721–745, 2001.
  • Wu, H., Ma, H., Li, H., Chebyshev-Legendre spectral method for solving the two-dimensional vorticity equations with homogeneous dirichlet conditions. Num. Meth. Part. Dif. Eqns., 25, 740–755, 2009.