Experimental study of temperature field in a solar chimney plant in Adıyaman

Güneş bacası üç ana bileşenden, bir güneş kolektörü, baca ve türbin den oluşan basit bir yenilenebilir enerji kaynağıdır. Hava cam toplayıcı altında sera etkisi ile ısıtılır. Çevre yoğunluğundan daha az olan bu sıcak hava, kolektör merkezinde baca doğru yükselir. Baca dibinde bir elektrik üreten türbin yükselen hava ile tahrik edilir. Bu çalışma güneş bacası tesisi alan sıcaklığını araştırmaktadır. Tasarlanan ve Adıyaman'da kurulan bu deneysel sistem, güneş bacası tesisinde belirlenen özel nokta ve yüksekliklerde çevresel sıcaklık, sıcaklık dağılımı, zemin sıcaklığı ve hava hızı incelemek için kullanılmıştır. Güneş ışınımı ve çevre sıcaklığı sistem üzerinde büyük bir etkisi olduğu ve farklı çevre sıcaklıklarının ve kolektörün çıkışındaki hava sıcaklığının yaklaşık olarak $21-26^{o}C$ olduğu saptanmıştır. Ayrıca, çevre hava hızı, sistem üzerinde etkisinin olmadığı görülmektedir. Ayrıca, türbin montajının yapılacağı yerdeki notada, sıcaklık ve hava hızı değerleri maksimum değerleri ölçüldü. Buna ek olarak, ölçümler güneş bacasının güney kesiminde sıcaklık dağılımı, kuzey kesiminde biraz daha fazla olduğunu göstermiştir.

Adıyaman’da bir güneş baca tesisinde sıcaklık alanın deneysel olarak incelenmesi

The solar chimney is a simple renewable energy source consisting of three main components, a solar collector, chimney and turbine. Air is heated by the greenhouse effect under the glass collector. This hot air, less dense than the surroundings, rises up the chimney at the center of the collector. At the base of the chimney an electricity generating turbine is driven by the rising air. This study investigates the temperature field in a solar chimney plant. The experimental system, designed and constructed in Adıyaman, is used to study the environmental temperature, distribution of the temperature, ground temperature and air velocity determined at the specified points and heights in the solar chimney system. It is found that solar radiation and environmental temperature has a huge impact on the system and temperature difference of the environment temperature and the output air temperature of the collector is approximately $21-26^{o}C$ Moreover, it is seen that the environmental air velocity has not affect over the system. Also, temperature and air velocity at the point where the turbine assembly to be made is measured as maximum value of the system. In addition, measurements has shown that the temperature distribution in the southern part of the solar chimney is little more than in the northern part.

___

  • Atit K., Tawit C., Partial geometric similarity for solar chimney power plant modeling, Solar Energy, 83, 1611–1618, 2009
  • Backstrom T.W.V., Gannon A.J., Compressible flow through solar power plant chimneys, ASME, Journal of Solar Energy Engineering,122, 138–45, 2000.
  • Bernardes M.A.S., von Backström T.W., Kröger D.G., Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors, Solar Energy, 83, 264–275, 2009.
  • Bernardes M.A.S., Symmetric sink flow and heat transfer between two parallel disks. ASME Summer Heat Transfer Conference – Heat Transfer, ASME, Las Vegas, Nevada, USA. 2003.
  • Bugutekin A., Effect of the collector diameter on solar chimney power plants, Energy Education Science and Technology, Part A 27, 155-168, 2011.
  • Dai Y.J., Huang H.B. and Wang N.R.Z., Case study of solar chimney power plants in North-western regions of China, Renewable Energy, 28, 1295–304, 2003.
  • Frederick N.O., Reccab M.O.J., The potential of solar chimney for application in rural areas of developing countries, Fuel, 85, 2561–6, 2006.
  • Gannon A.J., Backstrom T.W.V., Solar chimney cycle analysis with system loss and solar collector performance, ASME, Journal of Solar Energy Engineering, 122-133,7, 2000.
  • Haaf W., Solar Chimneys, Part II: Preliminary Test Results From the Manzanares Pilot Plant, Int. J. Sol. Energy, 2, 141–161, 1984.
  • Haaf W., Friedrich K., Mayr G. and Schlaich J., Solar Chimneys,Part I: Principle and Construction of the Pilot Plant in Manzanares, Int. J. Sol .Energy, 2, 3–20, 1983.
  • Krisst R.J.K., Energy transfer system, Alternative Sources of Energy, 63, 8–11, 1983.
  • Kulunk H., A prototype solar convection chimney operated under Izmit conditions, Proceedings of seventh MICAES, 162, 1985.
  • Ninic, N, Available energy of the air in solar chimneys and the possibility of its ground-level concentration. Solar Energy 80, 804–811, 2006.
  • Pasurmarthi N. and Sherif S.A., Performance of a demonstration solar chimney model for power generation, Proceeding of the 35th heat transfer and fluid, Sacramento, CA, USA, 203–40, 1997.
  • Pretorius J.P., Kröger D.G., Critical evaluation of solar chimney power plant performance, Solar Energy, 80, 535–544, 2006.
  • Pretorius J.P., Kröger D.G., Buys J.D. and von Backström T.W., Solar tower power plant performance characteristics, Proceedings of the ISES EuroSun International Sonnenforum 1, Freiburg, Germany, 870– 879, 2004.
  • Schlaich J., Bergermann R., Schiel W., Weinrebe G., Design of Commercial Solar Updraft Tower System – Utilization of Solar Induced Convective Flows for Power Generation, ASME J. Solar Energy Eng., 127, 1, 117-124, 2005.
  • Schlaich J., The solar chimney: Electricity From the Sun, Editor: Maurer C., Germany, Geislingen; 1995. Schlaich J., The Solar Chimney: Electricity From the Sun, Deutsche Verlags-Anstalt, Stuttgart. 1994.
  • Selbaş R., Yakut A.K., Şencan A., An Application For Electrical Production With Solar Tower System, Pamukkale University Engineering College, Journal of Engineering Sciences, 9, 179-184, 2003.(in Turkish)
  • Xinping Z., Jiakuan Y., Xiao B., Guoxiang H., Simulation of a pilot solar chimney thermal power generating equipment, Renewable Energy, 32, 1637– 1644, 2007.
  • Xinping Z., Jiakuan Y., Xiao B., Guoxiang H., Experimental study of temperature field in a solar chimney power setup, Applied Thermal Engineering, 27, 2044-2050, 2007.
  • Zaslavsky D., Solar Energy without a collector for electricity and water in the 21th century. The 8th Sede Boqer Symposium on Solar Electricity Generation, Technion - Israel Institute of Technology, 3-5 November Haifa 1997.
  • Zhang H.F., Solar Thermal Energy Utilization and Computer Simulation, Xi’an, China, Northwestern Polytechnic University Press,1992.