Experimental and computational investigation of velocity field for intermediate region of laminar pulsatile pipe flow

Bu çalışmada, laminar-darbeli boru akışının ara bölgesindeki hız alanı deneysel ve hesaplamalı teknikler kullanılarak incelenmiştir. Öncelikle, bir test bölgesindeki kesitsel hız dağılımının ve statik basınç farkının bir darbe çeviriminin 30 farklı anındaki değişimleri, sırasıyla bir kızgın-tel anemometresi ve bir basınç transdüseri kullanarak 29 farklı çalışma şartını kapsayacak şekilde (2.26x$10^ 3underline +$17%≤Reta≤4.36x$10^ 3underline +$10%, 5.1$underline +$4%≤ $sqrt{omega'}$ ≤28.0$underline +$0.05%, 0.03≤A1≤0.71), ölçülmüştür. Daha sonra, deneysel şartların birbirinden farklı seçilmiş dört tanesi, sonlu-hacim tabanlı Fluent yazılım programı vasıtasıyla, hesaplamalı olarak analiz edilmiştir. Hem hesaplamalı hem de deneysel çalışmaların neticeleri göstermektedir ki; laminar-darbeli boru akışının ara bölgesindeki bütün şartlar için boyutsuz hız profillerinin genel eğilimleri Blasius’un dağılımına çok benzemekte fakat Prandtl’ın dağılımından önemli ölçüde farklılık göstermektedir. Bütün deney şartları için hem deneysel hem de hesaplamalı hız profilleri bir darbe çevriminin bazı fazlarında Blasus’un dağılımından daha küt olmakta fakat kalan fazlarda ondan daha keskin olmaktadır.

Laminar darbeli boru akışının ara bölgesi için hız alanının deneysel ve hesaplamalı olarak incelenmesi

In this study, velocity field in intermediate region of laminar-pulsatile pipe flow is investigated by using experimental and computational techniques. Initially, variations of cross sectional velocity profile and static pressure difference at a test section through 30 different instants of a pulsation cycle are measured respectively by means of a hot-wire anemometer and a pressure transducer for 29 different runs covering the ranges; 2.26x$10^ 3underline +$17%≤Reta≤4.36x$10^ 3underline +$10%, 5.1$underline +$4%≤ $sqrt{omega'}$ ≤28.0$underline +$0.05%, 0.03≤A1≤0.71. Selected four different ones of the experimental runs are then analyzed computationally by using the finite-volume based Fluent software-package. The results of both experimental and computational parts of this study indicate that the general tendencies of dimensionless velocity profiles are very similar to the Blasius’s distribution but differ appreciably from the Prandtl’s distribution for the all runs in intermediate region of laminar-pulsatile pipe flow. Both the experimental and the computational velocity profiles become blunter than the Blasius’s distribution in some phases of the pulsation cycle but become sharper than it in the remaining phases for the all runs.

___

  • ANSYS Inc., Boundary Conditions, in Introductory Fluent Notes, 4-8, 2006.
  • Atabek, H. B., and Chang, C. C., Oscillatory flow near the entry of a circular tube, Zeitschrift für angewandte Mathematik und Physik 12, 185-201, 1961.
  • Atabek, H. B., Chang, C. C., and Fingerson, L. M., Measurement of laminar oscillatory flow in the inlet of a circular tube, Physics of Medicine Biology 9, 219-227, 1965.
  • Balmer, R. T., and Fiorina, M. A., Unsteady flow of an inelastic power-law fluid in a circular tube, Journal of Non-Newtonian Fluid Mechanics 7, 189-198, 1980.
  • Brown, F. T., The transient response of fluid lines, Journal of Basic Engineering, Transactions of the ASME, Series D 84, 547-553, 1962.
  • Carpinlioglu, M. O., and Gundogdu, M. Y., A critical review on pulsatile pipe flow studies directing towards future research topics, Flow Meas Instrum 12, 163-174, 2001a.
  • Carpinlioglu, M. O., and Gundogdu, M. Y., Presentation of a test system in terms of generated pulsatile flow characteristics, Flow Meas Instrum 12, 181-190, 2001b.
  • Denison, E. B., Pulsating laminar flow measurements with a directionally-sensitive laser velocimeter, Ph.D. Dissertation, Purdue University, 1970.
  • Denison, E. B., Stevenson, W. H., and Fox, R. W., Pulsating laminar flow measurements with a directionally sensitive laser velocimeter, AIChE Journal 17, 781-787, 1971.
  • Donovan, F. M., Taylor, B. C., and Su, M. C., Onedimensional computer analysis of oscillatory flow in rigid tubes, Journal of Biomechanical Engineering 113, 476-484, 1991.
  • Donovan, F. M., McIlwain, R. W., Mittmann, D. H., and Taylor, B.C., Experimental correlations to predict fluid resistance for simple pulsatile laminar flow of incompressible fluids in rigid tubes, Journal of Fluids Engineering 116, 516-521, 1994.
  • D’Souza, A. F., and Oldenburger, R., Dynamic response of fluid lines, Journal of Basic Engineering, Transactions of the ASME, Series D 86, 589-598, 1964.
  • Farell, C., and Youssef, S., Experiments on turbulence management using screen and honeycombs, Trans. A.S.M.E, J. Fluids Engng 118, 26-32, 1996.
  • Florio, P. J., and Mueller, W. K., Development of a periodic flow in a rigid tube, Journal of Basic Engineering, Transactions of the ASME, Series D 90, 395-399, 1968.
  • Gerlach, C. R., and Parker, J. D., Wave propagation in viscous fluid lines including higher model effect, Journal of Basic Engineering, Transactions of the ASME, Series D 89, 782-788, 1967.
  • Gerrard, J. H., and Hughes, M. D., The flow due to an oscillating piston in a cylindrical tube: A comparison between experiment and a simple entrance flow theory, J Fluid Mech 50, 97-106, 1971.
  • Gundogdu, M. Y., and Carpinlioglu, M. O., Present state of art on pulsatile flow theory. Part 1: laminar and transitional flow regimes, JSME International Journal 42, 384-397, 1999.
  • Gundogdu, M. Y., An experimental investigation on pulsatile pipe flows, Ph.D Thesis, University of Gaziantep, Department of Mechanical Engineering, 2000.
  • Gundogdu, M. Y., and Carpinlioglu, M. O., An interactive data acquisition and control system coupled on a pulsatile pipe flow test rig, Measurement and Control 35, 43-46, 2002.
  • Harris, J., Peer, G., and Wilkinson, W. L., Velocity profiles in laminar oscillating flow in tubes, J. Phys. E. J. Sci. Instrum. 2, 913-916, 1969.
  • Hershey, D., and Song, G., Friction factors and pressure drop for sinusoidal laminar flow of water and blood in rigid tubes, AIChE Journal 13, 491-496, 1967.
  • Hino, M., Sawamato, M., and Takasu, S., Experiments on transition to turbulence in an oscillatory pipe flow, J Fluid Mech 75, Part 2, 193-207, 1976.
  • Jayasinghe, D. A. P., Letelier, S. M., and Leutheusser, H.J., Frequency-dependent friction in oscillatory laminar pipe flow, Internaional Journal of Mechanical Sciences 16, 819-827, 1974.
  • Jung, J., Lyczkowski, R. W., Panchal, C. B., and Hassanein, A., Multiphase hemodynamic simulation with pulsatile flow in a coronary artery, J. Biomech. 39, 2064-2073, 2006.
  • Linford, R. G., and Ryan, N. W., Pulsatile flow in rigid tubes, Journal of Applied Physiology 20, 1078-1082, 1965.
  • Linke, W., and Hufschmidt, W., Wärmeübergang bei pulsierender Strömung (Heat transfer in pulsating flow), Chem. Ing. Techn. 30 159-165, 1958.
  • Loehrke, R. L., and Nagib, H. M., Control of free stream turbulence by means of honeycombs: A balance between suppression and generation, Trans. A.S.M.E, J. Fluids Engng 98, 342-353, 1976.
  • Muto, T., and Nakane, K., Unsteady flow in circular tube; Velocity distribution of pulsatile flow, Bulletin of JSME 23, 1990-1996, 1980.
  • Ohmi, M., Usui, T., Fukawa, M., and Hirasaki, S., Pressure and velocity distributions in pulsating laminar pipe flow, Bull Jpn Soc Mech Eng 19, 298-306, 1976.
  • Ohmi, M., Iguchi, M., and Usui, T., Flow pattern and frictional losses in pulsating pipe flow. Part 5: Wall shear stress and flow pattern in a laminar flow, Bull Jpn Soc Mech Eng 24, 75-81, 1981a.
  • Ohmi, M., and Iguchi, M., Flow pattern and frictional losses in pulsating pipe flow. Part 6: Frictional losses in a laminar flow, Bulletin of the JSME 24, 1756-1763, 1981b.
  • Ohmi, M., Iguchi, M., and Urahata, I., Transition to turbulence in a pulsatile pipe flow. Part 1; Wave forms and distribution of pulsatile velocities near transition region, Bull Jpn Soc Mech Eng 25, 182-189, 1982.
  • Richardson, E. G., The amplitude of sound waves in resonators, Proceedings of the Physical Society 40, 206- 220, 1928.
  • Richardson, E. G., and Tyler, E., The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow is established, Proceedings of the Physical Society 42, 1-15, 1930.
  • Rosenhead, L., Laminar Boundary Layers, Oxford University Press, 1963.
  • Sexl, T., Uber den von E. G. Richardson entdeckten ‘Annulareffekt’, Zeitschrift für Physik 61, 349-362, 1930.
  • Steinman, D. A., Image-based computational fluid dynamics modeling in realistic arterial geometries, Ann. Biomed. Eng. 30, 483-497, 2002.
  • Szymanski, P., Some exact solutions of the hydrodynamic equation of a viscous fluid in the case of a cylindrical tube, J. Math. Pure Appl. 11, 67-107, 1932.
  • Uchida, S., The pulsating viscous flow superposed on the steady laminar motion of incompressible fluids in a circular pipe, Z. Angew. Math. Phys. 7, 403-422, 1956.
  • Unsal, B., Ray, S., Durst, F., and Ertunc, O., Pulsating laminar pipe flows with sinusoidal mass flux variations, Fluid Dynamics Research 37, 317-333, 2005.
  • Womersley, J. R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, Journal of Physiology 127, 553-563, 1955.
  • Womersley, J. R., An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, WADC Technical Report TR56-614, 1957.
  • Yilmaz, F., and Gundogdu, M. Y., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea Aust Rheol J 20, 197-211, 2008.
  • Yilmaz, F., and Gundogdu, M. Y., Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow, Korea Aust Rheol J 21, 161- 173, 2009.
  • Zhao, T., Sanada, K., Kitagawa, A., and Takenaka, T., Real time measurement for high frequency pulsating flow rate in a pipe, J Dyn Syst Meas Contr 112, 762- 768, 1990.
  • Zielke, W., Frequency-dependent friction in transient pipe flow, Journal of Basic Engineering, Transactions of the ASME, Series D 90, 109-115, 1968