Analysis of heat pumps with zeotropic refrigerant mixtures by Taguchi method

Bu çalışmanın amacı Taguchi metodu kullanarak buhar sıkıştırmalı ısı pompası sistemlerinin optimum çalışma parametrelerini belirlemektir. Deney sistemi; su soğutmalı kondenser, zorlanmış hava soğutmalı evoparator, hava ve su ısıtıcıları, çeşitli ölçüm cihazları ve yardımcı ekipmanları içeren ısı pompası sisteminden oluşmaktadır. Soğutucu akışkan olarak R22, R407C ve bunların kütlesel olarak beş faklı (0%, 25%, 50%, 75%, 100% R407C ) karışımı kullanılmıştır. Etkin ve optimum çalışma parametrelerini hesaplamak için Genichi Taguchi tarafından önerilen deneysel yöntem kullanılmıştır. Performans katsayısı için en etkin parametre kondenser su debisi, ekserji verimi için en etkin parametre kondenser suyu giriş sıcaklığı olarak bulunmuştur.

Zeotropik gaz karışımları kullanan ısı pompalarının Taguchi metodu ile analizi

The goal of this work is to determine the optimum set of parameters by using the Taguchi method in vapour compression heat pump systems. The experimental apparatus consist of an air-to-liquid vapor compression heat pump, a water cooled condenser, a forced air evaporator, an electrical air and water heaters, and various measuring elements and other auxiliary equipments. Refrigerants R22, R407C, and five of their binary mixtures which contain about 0%, 25%, 50%, 75%, and 100% mass fractions of R407C were tested. To determine the effect of the chosen parameters on the system and optimum working conditions, an experimental design method suggested by Genichi Taguchi was used. The most effective parameters are found to be the condenser water mass flow rate for the coefficient of performance and to be condenser water inlet temperature for the exergetic efficiency.

___

  • Aprea C, and Greco A., An exergetic analysis of R22 substitution. Appl. Therm. Eng. 22, 1455-1469, 2002.
  • Aprea C, and Greco A., Performance evaluation of R22 and R407C in a vapour compression plant with reciprocating compressor. Appl. Therm. Eng. 23, 215- 227, 2003.
  • Ayhan T., Çomakli Ö., Kaygusuz K., Experimental investigation of the exergetic efficiency of solar assisted and energy storage heat pump systems, Energy Conversion and Management. 33, 165-173, 1992.
  • Bilen K., Yapici S, Celik C., A Taguchi approach for investigation of heat transfer from a surface equipped with rectangular blocks, Energy Conversion and Management, 42, 951-961, 2001.
  • Cavallini A., Working fluids for mechanical refrigeration, Review paper. Int. J. Refrig 19, 485- 496. 1996.
  • Comakli K., Simsek F., Comakli O., Sahin B., Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method. Applied Energy, 86, 2451–2458, 2009.
  • Comakli K., Yüksel B., Comakli Ö., Evaluation of energy and exergy losses in district heating network, Appl. Therm. Eng. 24, 1009-1017, 2004.
  • Comakli O., Celik C, Erdogan S., Determination of optimum working conditions in heat-pumps using nonazeotropic refrigerant mixtures. Energy Conversion and Management. 40, 193-203, 1999.
  • Greco A., Mastrullo R., Palombo A., R407C as an alternative to R22 in vapour compression plant: An experimental study. Int. J. Energy Res. 21, 1087- 1098, 1997.
  • Henderson PC., Mongey B., Hewitt NJ., McMullan JT., Replacing R22 with a hydrocarbon or hydrofluorocarbon?. Int. J. Energy Res. 25, 281-290, 2001.
  • Holman JP., Experimental methods for engineers. 7th ed. McGraw-Hill, New York, 2001.
  • Kackar RN., Off-line quality control, Parameter design and Taguchi method. J. Quality Eng., 17; 176- 209. 1985.
  • Karagoz S., Yilmaz M., Comakli O., Ozyurt O., R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps. Energy Conversion and Management, 45, 181-196, 2004.
  • Kaygusuz K., Ayhan T., Exergy analysis of solar assisted heat pump systems for domestic heating, Energy, 18, 1077-1085, 1993.
  • Lu SM., Li YCM., Tang JC., Optimum design of natural-circulation solar-water-heater by the Taguchi method, Energy, 28, 741–750, 2003.
  • Mattarolo L., Refrigerants and environment protection. I. Ulusal Soğutma ve İklimlendirme Sempozyumu, Istanbul Turkey, p. 51-70, 1990.
  • Nakayama W., A methodology to work on geometrically complex heat transfer systems: the cases of heat conduction through composite slabs, International Journal of Heat and Mass Transfer, 46, 3397–3409, 2003.
  • Phadke MS., Quality engineering using robust design. Prentice Hall, New Jersey, 1986
  • Phadke MS., Kackar RN., Speeney DV., Grieco MJ., Off-Line quality control in integrated circuit fabrication using experimental design. The Bell Sys. Tech. Journal, 62, 1273-1309, 1983.
  • Ross PJ., Taguchi techniques for quality engineering. McGraw, New York, 1987
  • Taguchi G., Taguchi techniques for quality engineering. Quality Resources, New York, 1987
  • Yilmaz M., Performance analysis of a vapor compression heat pump using zeotropic refrigerant mixtures. Energy Conversion and Management, 44, 267–282, 2003.
  • Yun JY., Lee KS., Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins, Int. J. Heat and Mass Transfer, 43, 2529-2539, 2000.
  • Zhao L., Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system. Energy Conversion and Management, 45, 1369-1378, 2004.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ