Elektroliz yöntemiyle hidrojen üretimine çeşitli parametrelerin etkisi

Bu çalışmada, elektroliz yöntemiyle hidrojen üretimi için iki fazlı akış prensibine dayanan matematiksel bir model geliştirilip sayısal olarak çözülmüştür. Bu çözümde hidrojen ve oksijen gazı konsantrasyonu, kanal boyunca hız dağılımı, katot üzerindeki akım yoğunluğu, değişik akım yoğunluklanndaki gaz oranı ve kabarcık çapının gaz oranı üzerindeki etkisi incelenmiştir. Gaz oranı akım yoğunluğu artırıldığında arttığı, kabarcık çapı büyüdüğünde ise azaldığı tespit edilmiştir. Gaz konsantrasyonu elektrot yakınlarında artmakta, membrana yaklaştıkça azalmaktadır.

The effects of various parameters on hydrogen production using electrolysis method

In this study, a two-phase mathematical model is developed for hydrogen production by electrolysis and solved numerically. Concentrations of hydrogen and oxygen gases, velocity distribution along the channel, flow density on the cathode, void fraction in different current density, and effects of bubble size on the void fraction were investigated. The present study showed that the increase in the current density resulted in an increase in the void fraction, whereas the void fraction decreases when the diameter of bubbles increases. Meanwhile, the gas concentration increases nearby the electrode, whereas it decreases towards the membrane.

___

  • Boissonneau, P., Byrne, P., An Experimental Investigation Bubbles-Induced Free Convection in Small Electrochemical Cell, J. Appl. Electrochem, 30,767-775,2000.
  • Clift, R., Grace, J.R., Weber, M.E., Bubbles Drops and Particles, New York, Academic Press, 1978.
  • Coehn, A., Neumann, H., Z.Phys., 20, 54, 1923.
  • Funk, J.E., Thorpe, J.F., Void Fraction and Current Density Distributions in a Water Electrolysis, J. Elecctrochem Soc., 116:48-54, 1969.
  • Hine, F., Yosuda, M., Nakamura, R., and Noda, I., Journal of Electrochemical Society, V.I22, 1185-1190, 1975.
  • Ishii, M., Thermofluid Dynamic Theory of Two-Phase Flow, Eyrolles, 1975.
  • Janssen, L.J.J., Hoogland, J.H., Electrochem.Acta, 583, 1970.
  • Kuo, J. T., Wallis G.B., Flow of Bubbles Through Nozzles, International Journal of Heat and Mass Transfer, 14, 547-556, 1988.
  • Lumanauw, D., Hydrogen Bubble Characterization in Alkaline Water Electrolysis, Ph. D. Thesis, Gradute Deparment of Metallurgy and Materails Science Univ. of Toronto, 1999.
  • Mat, M.D., Aldas, K. and Ilegbusi, O.J., A Two-Phase Model for Hydrogen Evolution in and Electrochemical Cell, International Journal of Hydrogen Energy, 29, 1015-1023, 2004.
  • Newman, J., Electrochemical System, 2nd edition, Prentice Hall, Englewood cliffs, NJ, 1991.
  • Panov, V.A., Examination of Collective Rise of Hydrogen Bubbles Produced by Electrolysis, J. Electrochemistry, 362-364, 1988.
  • Reigel, H., Mitrovic, J., Stephan, K., Role of Mass Transfer on Hydrogen Evolution Aqueous Media, Journal of Applied Electrochemistr, 28, 10-17, 1998.
  • Rosten, H., Spalding, D.B., Phoenics Manual, CHAM, TR/100, London, 1986.
  • Sides, P.J., Tobias, C.W., J.Electrochem Soc, 132, 583,1985.
  • Voght, H., Gas Evolving Electrodes. In Comprehensive Treatise of Electrochemistry, Plenum Press, New York, 6, 445- 1983.
  • Wedin, R. and Dahlkild, A.A., On the Transport of Small Bubbles Under Developing Channel Flow in a Buoyant Gas-Evolving Electrochemical Cell, Ind. Eng. Chem. Res., 40, 5228-5233, 2001.
  • Ziegler, D. and Evans, J.W., Mathematical Modeling of Electrolyte Circulation in Cell With Planar Vertical Electrodes, J. Electrochem. Soc, 103(3), 567-576, 1986.