Comparison of superheating effect of water as a refrigerant with the other refrigerants

Su (R718) soğutucu akışkan olarak, R717, R290, R134a ve R152a gibi soğutucu akışkanlarla performans açısından buhar sıkıştırmalı bir soğutma sisteminde kıyaslanmıştır. Aşırı ısıtmanın olduğu buhar sıkıştırmalı soğutma çevriminin simülasyonunu yapan bir bilgisayar programı geliştirilerek kullanılan soğutucu akışkanlar için çevrimin soğutma tesir katsayısı (STK) hesaplanmıştır. Farklı aşırı ısıtma durumları için, su’yun diğer soğutucu akışkanlara göre daha yüksek STK değerlerini verdiği buharlaştırma sıcaklıkları araştırılmıştır. Aşırı ısıtmanın STK üzerindeki etkileri araştırılmıştır. Artan buharlaştırıcı sıcaklıklarında, R718’in bağıl STK değerinde keskin bir artma görülmüştür. Sabit buharlaştırıcı sıcaklıklarında, aşırı ısıtma derecesi arttığında R718’in mutlak STK değeri artmaktadır. Yoğuşturucu sıcaklığı ve politropik verim sabit tutulduğunda, 26˚C’nin üzerindeki buharlaştırıcı sıcaklıklarında yüksek aşırı ısıtma değerlerinde (6K-8K), R718’in en yüksek bağıl STK artışını verdiği tespit edilmiştir.

Suyun soğutucu akışkan olarak aşırı ısıtma etkisinin diğer akışkanlarla kıyaslanması

The performance comparison of water as a refrigerant (R718) with some refrigerants including R717, R290, R134a, and R152a is presented for a vapor compression refrigeration cycle. A computer program simulating the vapor compression refrigeration cycle including superheating was developed to calculate the coefficient of performances (COPs) for the refrigerants. Evaporator temperatures which water yields a better COP over the other refrigerants are investigated for different superheating cases. The effects of degree of superheating on the COPs are observed. R718 shows the steepest increase in the relative COP gain with increasing evaporator temperature. At constant evaporator temperatures, the absolute COP of R718 increases as the degree of superheating increases. It is found that for evaporator temperatures above 26˚C and high degree of superheating (6K-8K), R718 gives the highest relative COP increase at constant condenser temperature and polytropic efficiency.

___

  • Albring P., Heinrich G., Turbo chiller with water as a refrigerant, Natural Working Fluids, IIR, Oslo, 93-99, 1998.
  • Chen G. M., Lu G.Q., Wang J.F., Thermodynamic analyses of the performance of a thermal storage system with water as its working fluid, Applied Energy, 57(4), 263-270, 1997.
  • Dincer, I., Refrigeration Systems and Applications, Wiley, England, 2003.
  • Elovic P., Holmes B., High capacity mechanical water-vapor compression vacuum ice machines for district cooling and heating, Proceedings from 87th Annual Conference of the International District Energy Association, June 8-12, Washington, CD, 215-226, 1996.
  • International Institute of Refrigeration, Compression cycles for environmentally acceptable refrigeration, air conditioning and heat pump systems, IIR, Paris, France,1992.
  • Khan J., Zubair S.M., Design and rating of dedicated mechanical-subcooling vapor compression refrigeration systems, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 214(5), 455-471, 2000.
  • Khan J., Zubair S.M., 2000. Design and rating of an integrated mechanical-subcooling vapor-compression refrigeration system, Energy Conversion and. Management 14(41) 1201-1222, 2000.
  • Koren A., Ophir A., Water vapor technology: Application to commercially operating equipment, Applications for natural refrigerants, IIR , Aarhus (Denmark), 559-565, 1996.
  • Madsboll H., Elefsen F., Water vapor compression and adiabatic cooling in the process Industry, International Conference on Energy Efficiency in Process Technology, Athens, 552-561, 1993.
  • Müller N., Design of compressor impellers for water as a refrigerant, ASHRAE Transaction, 107, 214-222, 2001.
  • Orshoven D.V, Klein S.A, Beckman W.A., 1993. An Investigation of water as a refrigerant, journal of Energy resources technology, 115, 257-263, 1993.
  • Parasad M., Parasad S., Optimum interstage pressure for R12 system including effects of subcooling and superheating, Journal of the Institution of Engineers (India), Part ME: Mechanical Engineering Division, V.63, 112-116, 1983.
  • Thornton J.W., Klein S.A., Mitchell J.W., Dedicated mechanical subcooling design strategies for supermarket applications, International Journal of Refrigeration, 17(8), 508-515, 1994.
  • Wight S.E., Yoshinaka T., Le Drew B.A., D’Orsi N.C, The efficiency limits of water vapor compressors, Report for Air-Conditioning and Refrigeration Technology Institute, 2000.
  • Van Wylen GJ, Sonntag RE., Fundamentals of Classical Thermodynamics, Third Edition, John Wiley and Sons, 1985
  • Zubair S.M., Improvement of refrigeration/air-conditioning performance with mechanical sub-cooling, Energy (Oxford), 15(5), 427-433, 1990.
  • Zubair S.M., Thermodynamics of a vapor compression refrigeration cycle with mechanical subcooling, Energy (Oxford), 19(6), 707-715, 1994.
  • Zubair S.M., Khan S.H., On Optimum interstage pressure for two-stage and mechanical-subcooling vapor-compression refrigeration cycles, Journal of Solar Energy Engineering, Transactions of the ASME, 117(1), 64-66, 1995.
  • Zubair S.M., Yaqub M., Khan S.H., Second-law-based thermodynamic analysis of two-stage and mechanical-subcooling refrigeration cycles, International Journal of Refrigeration, 19(8), 506-516, 1996.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ