Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method

Bu çalışmada, ısıl iletkenliği sıcaklıkla değişen dairesel kanatların ısıl performansını incelemek için homotopi analiz yöntemi kullanılmıştır. Yöntemin algoritması, çözümün doğruluğu ve yakınsaklığını kontrol eden bir parametre içerdiğinden, sonuçlar hatanın çözüm anında hesaplanmasıyla doğrulanabilir. HAM, pertürbasyon yöntemlerinin aksine çok geniş problem parametreleri aralıkları için yakınsak çözümler vermektedir. Bu çalışmada dairesel kanatların verimleri üç problem parametresi cinsinden elde edilmiştir. Çözümden elde edilen veri yardımıyla kanat verimi için korelasyon denklemleri üretilmiştir. Korelasyon denklemleri ısı iletim katsayıları sıcaklıkla değişen dairesel kanatların tasarımı için kullanılabilir.

Isıl iletkenliği sıcaklıkla değişen dairesel kanatların performansının homotopi analiz yöntemi ile incelenmesi

The homotopy analysis method (HAM) is used to analyze the thermal performance of annular fins with temperature-dependent thermal conductivity. Since the HAM algorithm contains a parameter that controls the convergence and accuracy of the solution, its results can be verified internally by calculating the residual error. The HAM solution appears in terms of algebraic expressions which are not only easy to compute but also give highly accurate results covering a wide range of values of the parameters rather than the small values dictated by the perturbation solution. In this work, the fin efficiency of nonlinear annular fins is obtained as a function of thermogeometric fin parameter, thermal conductivity parameter and radii ratio. The data from the present solutions is correlated for suitable ranges of problem parameters. The resulting correlation equations can assist thermal design engineers for designing of annular fins with temperature-dependent thermal conductivity.

___

  • Arslanturk, C., A decomposition method for fin efficiency of convective straight fins with temperaturedependent thermal conductivity, International Communications in Heat and Mass Transfer, 32, 831- 841, 2005.
  • Arslanturk, C., Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity, Heat and Mass Transfer, 45, 519-525, 2009.
  • Aziz, A., Optimum dimensions of extended surfaces operating in a convective environment, Applied Mechanics Review, 45, 155-173, 1992.
  • Aziz, A., and Enamul Hug, S. M., Perturbation solution for convecting fin with variable thermal conductivity. ASME Journal Heat Transfer, 97C, 300-301, 1975.
  • Coşkun, S. B., and Atay, M. T., Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method, Applied Thermal Engineering, 28, 2345-2352, 2008.
  • Domairry, G., and Fazeli, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Communications in Nonlinear Science and Numerical Simulation,14, 489-499,2009.
  • Inc, M., Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Mathematics and Computers in Simulation, 79, 189- 200, 2008.
  • Joneidi, A. A., Ganji, D .D., and Babaelahi, M., Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, International Communications in Heat and Mass Transfer, 36, 757- 762, 2009.
  • Khani, F., Raji, A. M., and Nejad, S. H, A series solution of the fin problem with a temperaturedependent thermal conductivity, Communications in Nonlinear Science and Numerical Simulation, 14, 3007– 3017, 2009a.
  • Khani, F., Raji, A. M., and Nejad, S. H, Analytical solution and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, 14, 3327–3338, 2009b.
  • Kraus, A., Aziz, A., and Welty, J., Extended surface heat transfer, Wiley, New York, 2001. Liao, S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.
  • Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method, Chapman & Hall/CRC Press, Boca Raton, 2003.
  • Liao, S. J., On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147, 499–513, 2004.
  • Malekzadeh, P., Rahideh, H., and Karami, G., Optimization of non-symmetric convective-radiative annular fins by differential quadrature method, Energy Conversion and Management, 48, 1671-1677, 2007.
  • Razelos, P., and Imre, K., Minimum mass convective fins with variable heat transfer coefficients, Journal of the Franklin Institute, 315, 269-282, 1983.
  • Sajid, M., Ahmad, I., Hayat, T., and Ayub, M., Unsteady flow and heat transfer of a second grade fluid over a stretching sheet, Communications in Nonlinear Science and Numerical Simulation, 14, 96–108, 2009.
  • Yu, L.T., Chen, C.K., Optimization of circular fins with variable thermal parameters, Journal of the Franklin Institute, 336, 77-95, 1999.