Combustion in a ramjet combustor with cavity flame holder

Alevin kavite yardımı ile tutulduğu bir ramjet yanma odasında alev davranışı sayısal olarak incelenmiştir. Yanma odası sabit kesit alanlı bir izolatörün hemen ardındadır. Hidrojen yakıtı kavitenin akış yukarı yönünde ses hızında enjekte edilmektedir. İkincil yakıt enjeksiyonu ise kavitenin arka duvarından sağlanmaktadır. Kavitenin ardında kesit alanı genişleyen bir kesim bulunur. Bu yaklaşım birçok tasarımda kullanılır. Sayısal hesaplamalar giriş Mach sayısı 1.4 için yapılmıştır. Durma noktası sıcaklığı 702 K olup, bu koşullar uçuş Mach sayısı olarak 3.3’e karşılık gelmektedir. Hesaplamalarda ayrıntılı kimyasal kinetik 9 tür ve 25 tepkime basamağından oluşan bir mekanizma ile göz önüne alınmıştır. Türbülans ise yüksek hızlı iç akışlar için uygun olan Menter’in $k - omega$ kayma gerilimi taşınımı modeli ile modellenmiştir. Sonuçta alevin kavitenin ön kenarına tutunduğu ve alevin jet ardındaki anafordan ziyade kavite içerisinde kararlı hale geldiği gözlemlenmiştir. Sayısal hesaplamalar tepkimeli akış alanının bütün önemli özelliklerini açığa çıkartabilmektedir.

Kavite alev tutuculu bir ramjet yakıcısında yanma

Combustion characteristics in a ramjet combustor with cavity flame-holder is studied numerically. Combustor follows a constant area isolator section and comprises of hydrogen fuel injected sonically upstream of the cavity. Secondary fuel injection is performed at the cavity back wall. A diverging section follows the cavity. These concepts are utilized in many designs. Simulations were performed for an entrance Mach number of 1.4. Stagnation temperature is 702 K, corresponding to a flight Mach number of 3.3. Detailed chemical kinetics is taken into account with a reaction mechanism comprising of 9 species and 25 reaction steps. Turbulence is modeled using Menter's $k omega$ shear stress transport model, which is suitable for high speed internal flows. It is observed that flame anchors at the leading edge of the cavity, and the flame is stabilized in the cavity mode rather than the jet-wake mode. Simulation captures all the essential features of the reacting flow field. Keywords:Ramjet, Combustion, Cavity, Computational fluid dynamics

___

  • Abbitt, J. D., Segal, C., McDaniel, J.C., Krauss, R.H., Whitehurst, R.B., “Experimental Supersonic Hydrogen Combustion Employing Staged Injection Behind a Rearward Facing Step”, Journal of Propulsion and Power, 9, 472-479, 1993.
  • Ben-Yakar, A., Hanson, R. K., “Cavity Flame Holders for Ignition and Flame Stabilization in Scramjets: An Overview”, J. Propulsion and Power, 17, 869-877, 2001.
  • Davidson, D. F., Petersen, E. L., Rohrig, M., Hanson, R.K., Bowman, C.T., “Measurement of the Rate Coefficient of $H + O _2 + Mrightarrow HO _2 + M$ for M=Ar and N2 at High Pressures”, 26 th Symposium (Int'l.) on Combustion, 481-488, 1996.
  • Dixon-Lewis, G., “Complex Chemical Reactions Systems. Mathematical Modelling and Simulation”, J. Warnatz, W. Jager, Eds., Springer-Verlag, Berlin, 1987.
  • Frenklach, M., Wang, H., Rabinowitz, M. J.,”Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method - Combustion of Methane”, Prog. Energy Combust. Sci., 18, 47-73, 1992.
  • Fuller, R. P., Wu, P., Nejad, A. S., Schetz, J. A., "Comparison of Physical and Aerodynamic Ramps as Fuel Injectors in Supersonic Flow", Journal of Propulsion and Power, 14, 135-145, 1998.
  • Hartfield, R. J.,Hollo, S. D., McDaniel, J. C.,”Experimental Investigation of a Supersonic Swept Ramp Injector Using Laser Induced Fluorescenc”, Journal of Propulsion and Power, 10, 129-135, 1994.
  • Hindmarsh, A. C., Broen, P. N., Grant, K. E.,Lee, S. L., Serban, R., Shumaker, D. E., Woodward, C. S., “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers”, ACM Transactions on Mathematical Software, 31, 363-396, 2005.
  • Hippler, H., Neunaber, H., Troe, J., “Shock Wave Studies of the Reactions $HO + H _2O _2rightarrow H _2O + HO _2$ and $HO + HO _2rightarrow H _2O + O _2$ Between 930 and 1680 K”, J. Chem. Phys., 103, 3510-3516, 1995.
  • Hippler, H., Troe, J., Willner, J., “Shock Wave Study of the Reaction $HO _2 + HO _2rightarrow H _2O _2 + O _2$ Confirmation of a Rate Constant Minimum Near 700 K”, J. Chem. Phys., 93, 1755-1760, 1990.
  • Issa, R. I., “Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting”, J. Comp. Phys., 62, 40-65, 1986.
  • Javed, A., Chakraborty, D., “Numerical Simulation of Supersonic Combustion of Pylon Injected Hydrogen Fuel in Scramjet Combustor”, IE(I) Journal-AS, 87, 1-6, 2006.
  • Keyser, L. F., “Kinetics of the Reaction $OH+ HO _2rightarrow H _2O + O _2$ from 254 K to 382 K”, J. Phys. Chem., 92, 1193-1200, 1988.
  • Liu, J., Tam, C. J., Lu, T., Law, C. K., “Simulations of Cavity Stabilized Flames in Supersonic Flows Using Reduced Chemical Kinetic Mechanisms”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California, AIAA Paper No: 2006-4862, 2006.
  • Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32, 269-289, 1994.
  • Michael, J. V., Sutherland, J. W., “Rate-Constant for the reaction of H with H2O and OH with H2 by the Flash- Photolysis Shock-Tube Technique Over the Temperature Range 1246-2297 K”, J. Physical Chemistry, 92, 3853- 3857, 1988.
  • Micka, D. J., Driscoll, J. F., “Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity Flameholder'”, Proceedings of the Combustion Institute, 32, 2397-2404, 2009.
  • Montgomery, J. M., Zhao, W., Adams, B. R., Eklund, D.R., Chen, J.Y., “Supersonic Combustion Simulations Using Reduced Chemical Kinetic Mechanisms and ISAT”, AIAA Computational Fluid Dynamics Conference, Orlando, Florida, AIAA Paper No: 2003- 3547, 2003.
  • Natarajan, K., Roth, P., ”High Temperature Rate Coefficient of O(3P) with H2 Obtained by the Resonance Absorption of O and H Atoms”, Combustion and Flame, 70, 267-279, 1987.
  • Poinsot, T. J., Lele, S. K., “Boundary Conditions for Direct Simulations of Compressible Viscous Reacting Flows”, J. of Computational Physics, 101, 1992, 104- 129, 1992.
  • Rhie, C., Chow, W., “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA Journal, 21, 1225-1232, 1983.
  • Riggins, D. W., McClinton, C. R., Rogers, R. C., Bittner, R. D., “Investigation of Scramjet Injection Strategies for High Mach Number Flows”, Journal of Propulsion and Power, 11, 409-418, 1995.
  • Riggins, D. W., Vitt, P. H., “Vortex Generation and Mixing In Three Dimensional Supersonic Combustors”, Journal of Propulsion and Power, 11, 419-426, 1995.
  • Shih, T. H., Liou, W. W., Shabbir, A., Tang, Z., Zhu, J., “A New Eddy Viscosity Model for High Reynolds Number Turbulent Flows”, Computers and Fluids, 24, 227-238, 1995.
  • Smith, G. P., Golden, D. M., Frenklach, M. Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K. Song, S., Gardiner, W. C. Jr., Lissianski, V. V., Qin, Z., GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/, 1999.
  • Stull, D.R. , Prophet, H., “JANAF Thermodynamic Tables”, 2nd Edition, US Government Printing Office, Washington DC, 1971.
  • Sung, C. J., Li, J. G., Yu, G., Law, C. K., “Influence of Chemical Kinetics on the Self-Ignition of a Model Supersonic Hydrogen-Air Combusto”, AIAA Journal, 37, 208-214, 1999.
  • Tam, C. J., Baurle, R. A., Gruber, M. R., “Numerical Study of a Supersonic Cross Flow”, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, AIAA Paper No: 1999-2254, 1999.
  • Tong, X. L., Luke, E., “Turbulence Models and Heat Transfer in Nozzle Flows”, AIAA Journal, 42, 2391- 2393, 2004.
  • Tsang, W., Hampson, R. F., “Chemical Kinetic Database for Combustion Chemistry 1. Methane and Related Compounds”, J. Physical and Chemical Reference Data, 15, 1087-1279, 1986.
  • Warnatz, J., “Rate Coefficients in the C/H/O System”, Combustion Chemistry, edited by W.C. Gardiner, Springer, 197, 1984.
  • Wooldridge, M. S., Hanson, R.K., Bowman, C.T., “A Shock Tube Study of $OH + OH rightarrow O _2H + O$ Reaction”, International Journal of Chemical Kinetics, 26, 389-401, 1994.
  • Yu, C. L., Frenklach, M., Masten, D. A., Hanson, R. K., Bowman, C. T., “Re-examination of Shock-Tube Measurements of The Rate Coefficients of $H+ O _2rightarrow OH + O$ “, J. Phys. Chem., 98, 4770-4771, 1994.
  • Zellner, R. E., Ewig, F., Paschke, R., Wagner, H. G., “Pressure and Temperature Dependence of the Gas Phase Recombination of Hydroxyl Radicals”, J. Phys. Chem., 92, 4184-4190, 1988.
  • Zhang, X., Edwards, J. A., “An Investigation of Supersonic Oscillatory Cavity Flows Driven by Thick Shear Layer”, Aeronautical Journal, 355-364, 1990.