Effects of Carbon Nanotube-Phosphorus Based Flame Retardant Combinations on Flammability of Polypropylene

Bu çalışmada çok duvarlı karbon nanotüplerin (MWCNT), fosfor esaslı güç tutuşur katkılı polipropilenin yanma davranışı üzerindeki etkileri araştırılmıştır. Ticari olarak temin edilebilen iki farklı tipteki fosfor esaslı güç tutuşur katkı, amonyum polifosfat esaslı Exolit AP 760 ve organik fosfor esaslı Aflammit PCO 900, polipropilenin güç tutuşur özelliğinin iyileştirilmesi amacıyla kullanılmıştır. Fosfor esaslı güç tutuşur katkı oranı, bütün güç tutuşur formülasyonlarında %8 oranında sabit tutulmuştur. Çok duvarlı karbon nanotüpler dört farklı oranda (%0,5, %1,0, %1,5 ve %2,0) güç tutuşur kompozisyonlara eklenmiştir. Bütün kompozitler çift vidalı ekstrüderde polimere katılmış, sonrasında enjeksiyon kalıplama tekniği kullanılarak kalıplanmıştır. Hazırlanan kompozitlerin termal özellikleri ve güç tutuşur özellikleri termogravimetrik analiz (TGA), limit oksijen indeksi (LOI) ve mikro yanma kalorimetresi (MCC) kullanılarak belirlenmiştir. Organik fosforiçeren güç tutuşur katkısı, amonyum polifosfat içeren güç tutuşur katkısına göre %11,6 oranında daha yüksek bir LOI değeri ile daha iyi bir güç tutuşur performans göstermiştir. Çok duvarlı karbon nanotüplerin ilavesi, polipropilen/fosfor esaslı güç tutuşur kombinasyonlarının LOI değerlerini düşürse de bütün sistemlerin termal stabilitesini yükseltmiştir. %2 oranında çok duvarlı karbon nanotüp ilavesinin polipropilen/organik fosfor esaslı kompozitin LOI değerini polipropilen/amonyum polifosfat esaslı kompozite göre %5,2 oranında daha fazla düşürdüğü görülmüştür. Her iki fosfor esaslı güç tutuşur varlığında polipropilenin ısı salınım hızı azalmıştır; ancak çok duvarlı karbon nanotüp ilavesi ile tekrar artmıştır.

Effects of Carbon Nanotube-Phosphorus Based Flame Retardant Combinations on Flammability of Polypropylene

The effects of multi-walled carbon nanotubes (MWCNTs) on fire behavior of phosphorus-based flame retardant (PBFR)/polypropylene (PP) were investigated. Two different type phosphorus-based flame retardant that commercially available; ammonium polyphosphate-based (Exolit AP 760) and organic phosphorous-based (Aflammit PCO 900) powders were studied to enhance the flammability of polypropylene. Phosphorus-based flame retardant content was fixed at 8 wt% of total flame retardant (FR) formulation. MWCNTs was incorporated into FR formulation at four different concentrations (0.5 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt%). All composites were prepared by melt compounding in a twin-screw extruder followed by injection molding technique. Thermal properties and flammability of the prepared samples were determined by thermogravimetric analysis (TGA), limiting oxygen index (LOI) and micro combustion calorimetry (MCC). Incorporation of organic phosphorous-based powder into PP matrix showed a better fire performance compared to ammonium polyphosphate-based flame retardant by resulting in an 11.6% higher LOI value. The LOI values decreased with the incorporation of MWCNTs into PP/ PBFR combinations; however, they still increased the thermal stability of each respective system. The addition of 2.0 wt% MWCNTs decreased the LOI value of PP/organic phosphorous-based FR system 5.2% higher than PP/ammonium polyphosphate-based FR system. The heat release rate of PP reduced in the presence of both PBFRs, but; increased with the introduction of MWCNTs

___

  • Du, B., Guo, Z., & Fang, Z. (2009). Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene. Polymer Degradation and Stability, 94(11), 1979-1985.
  • Zhang, S., & Horrocks, A. R. (2003). A review of flame retardant polypropylene fibres. Progress in Polymer Science, 28(11), 1517-1538.
  • Antoš, K., & Sedlář, J. (2005). Influence of brominated flame retardant thermal decomposition products on HALS. Polymer Degradation and Stability, 90(1), 188-194.
  • Horrocks, A. R. (2011). Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polymer Degradation and Stability, 96(3), 377-392.
  • Kim, Y. S., & Davis, R. (2014). Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films, 550, 184-189.
  • Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., & Dubois, P. (2009). New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Materials Science and Engineering: R: Reports, 63(3), 100-125.
  • Liang, S., Neisius, N. M., & Gaan, S. (2013). Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings, 76(11), 1642-1665.
  • Yin, X., Krifa, M., & Koo, J. H. (2015). Flame-Retardant Polyamide 6/Carbon Nanotube Nanofibers: Processing and Characterization. Journal of Engineered Fabrics & Fibers (JEFF), 10(3).
  • Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., & Douglas, J. (2002). Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites. Macromolecular rapid communications, 23(13), 761-765.
  • Shahvazian, M., & Seyedmir, M. R. (2012). Effects of MWNTs on Flame Retardation and Thermal Stabilization Performance of Phosphorus-containing Flame Retardants in Polypropylene. Orient. J. Chem., 28, 1631-1637.
  • Babrauskas, V., & Peacock, R. D. (1992). Heat release rate: the single most important variable in fire hazard. Fire safety journal, 18(3), 255-272.
  • Rabe, S., Chuenban, Y., & Schartel, B. (2017). Exploring the modes of action of phosphorus-based flame retardants in polymeric systems. Materials, 10(5), 455.