Performances Investigation of the Eco-friendly Refrigerant R13I1 used as Working Fluid in the Ejector-Expansion Refrigeration Cycle

Performances Investigation of the Eco-friendly Refrigerant R13I1 used as Working Fluid in the Ejector-Expansion Refrigeration Cycle

Knowing that from 2030 refrigerants used in refrigerating engineering should have a global warming potential (GWP) of less than 150. Searching for eco-friendly refrigerants with good performance and minimal environmental impact to substitute conventional working fluids such as R134a (GWP=1430) represents a great challenge for researchers. The present research aims to investigate and compare the performances of the eco-friendly refrigerant R13I1 (Zero GWP) used as a possible new working fluid in the ejector-expansion refrigeration cycle (EERC) with the commonly used R134a which has good performances but a high GWP. To reach this objective, a numerical program was developed using MATLAB software to evaluate the coefficient of performance (COP), the entrainment ratio (µ), the exergy destruction and the exergy efficiency for both refrigerants. Furthermore, the effect of the diffuser efficiency of the ejector on the COP and the compressor work was explored. Furthermore, the effect of the diffuser efficiency of the ejector on the COP, and the compressor work were explored. The simulation was realized for Tc selected between 30 and 55 °C and Te ranging between -10 and 10 °C. Results proved that the use of R13I1 as a working fluid in the EERC system exhibited a higher COP, µ, and exergy efficiency, as well as lower exergy destruction compared with R134a under the same operating temperatures. On another hand, the energetic analysis revealed that as Tc increases the COP and µ decrease. However, as Te varies from -10 and 10 °C, the COP and µ increase. Regarding exergy analysis, it should be noted that both exergy destruction and exergy efficiency are sensitively influenced by Tc more than Te. Overall, the study confirms that R13I1 could be a suitable substitute for the phase-out R134a in terms of performance and environmental protection.

___

  • W.T.Tsai, “Environmental risks of new-generation fluorocarbons in replacement of potent greenhouse gases,” Int. J. Glob. Warm., 5,84–95, 2013, doi:10.1504/IJGW.2013.051484.
  • A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, and B. Peris, “Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems,” Int. J. Refrig., 52,21–31, 2015, doi:10.1016/j.ijrefrig.2014.12.021.
  • J. Zhang, B. Elmegaard, and F. Haglind, “Condensation heat transfer and pressure drop characteristics of zeotropic mixtures of R134a/R245fa in plate heat exchangers,” Int. J. Heat. Mass. Transf., 164,120577, 2021, doi:10.1016/j.ijheatmasstransfer.2020.120577.
  • AA. Kornhauser, “The Use Of An Ejector as Refrigerant Expander,” Int. J. Refrig. Air. Cond., 1990, doi:10.1109/IECEC.1990.747930.
  • J. Sarkar, “Ejector enhanced vapor compression refrigeration and heat pump systems - A review,” Renew Sustain Energy Rev.,16, 6647–6659 2012, doi:10.1016/j.rser.2012.08.007.
  • M. Yari, “Exergetic analysis of the vapour compression refrigeration cycle using ejector as an expander,” Int. J. Exergy, 5,326–340, 2008, doi:10.1504/IJEX.2008.018114.
  • E. Nehdi, L. Kairouani, and M. Bouzaina, “Performance analysis of the vapour compression cycle using ejector as an expander,” Int. J. Energy. Res., 31,364–375, 2007, doi:10.1002/er.1260.
  • Bilir HKE. Nagihan, “Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector,” , 33,23–40, 2012, doi:10.1002/er.
  • P. Chaiwongsa, and S. Wongwises, “Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device,” Appl Therm Eng., 28,467–477, 2008, doi:10.1016/j.applthermaleng.2007.05.005. J. Sarkar, “Optimization of ejector-expansion transcritical CO2 heat pump cycle,” Energy., 33,1399–1406, 2008, doi:10.1016/j.energy.2008.04.007.
  • S. Elbel, and P. Hrnjak, “Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation,” Int. J. Refrig., 31, 411–422,2008, doi:10.1016/j.ijrefrig.2007.07.013.
  • HK. Ersoy, and N. Bilir, “Performance characteristics of ejector expander transcritical CO 2 refrigeration cycle,” Proc Inst Mech Eng Part A J Power Energy., 226,623–635, 2012, doi:10.1177/0957650912446547.
  • Y. Gao, G. He, D. Cai, and M. Fan, “Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device,”Energy., 212,118614, 2020, doi:10.1016/j.energy.2020.118614.
  • Z. Ma, X. Liu, H. Wang, H. Li, and X. Wang, “Off-Design Analysis of Hydrocarbon-based Ejector-Expansion Refrigeration Cycle,” Energy Procedia.,105, 4685–4690, 2017, doi:10.1016/j.egypro.2017.03.1015.
  • A. Shen, K. Guan, X. Yang, S. Jin, and L. Yang, “Theoretical analysis of a novel liquid-vapor separation condensation ejector refrigeration cycle with zeotropic mixtures,” Energy Convers Manag., 223,113322, 2020, doi:10.1016/j.enconman.2020.113322.
  • Y. Liu, and J. Yu, “Performance evaluation of an ejector subcooling refrigeration cycle with zeotropic mixture R290/R170 for low-temperature freezer applications,” Appl Therm Eng., 161, 114128, 2019, doi:10.1016/j.applthermaleng.2019.114128.
  • KKI. Al-Chlaihawi, and K. Al-Farhany, “A Comprehensive Energetic and Exergetic Analysis of an Ejector Expansion Refrigeration Cycle Using R22 and R410A,” Int J Air-Conditioning Refrig., 29, 2150013, 2021, doi:10.1142/S2010132521500139.
  • L. Zhao, X. Yang, S. Deng, H. Li, and Z. Yu, “Performance analysis of the ejector-expansion refrigeration cycle using zeotropic mixtures,” Int. J. Refrig., 57, 197-207, 2015, doi:10.1016/j.ijrefrig.2015.05.006.
  • G. Yan, T. Bai, and J. Yu, “Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers,” Energy., 95, 144-154, 2016, doi:10.1016/j.energy.2015.11.067.
  • P. Jakończuk, K. Śmierciew, H. Zou, D. Butrymowicz, and A. Dudar, “Temperature drop of heating fluid as a primary condition for effective utilization of low-grade heat using flash cycles and zeotropic mixtures in refrigeration ejector systems,” Energy Sources, Part A Recover Util Environ Eff .,1–19, 2021, doi:10.1080/15567036.2021.1876185.
  • TA. Jacob, and BM. Fronk, “In-Tube condensation of zeotropic refrigerant R454C from superheated vapor to subcooled liquid,” Sci Technol Built Environ., 26,1177–1190, 2020, doi:10.1080/23744731.2020.1804281.
  • SC. Yelishala, K. Kannaiyan, Z. Wang, H. Metghalchi, YA. Levendis, and R. Sadr, “Thermodynamic Study on Blends of Hydrocarbons and Carbon Dioxide as Zeotropic Refrigerants,” J Energy Resour Technol., 142,19-1855, 2020, doi:10.1115/1.4045930.
  • JM. Calm, “The next generation of refrigerants – Historical review, considerations, and outlook,” Int. J. Refrig., 31,1123–1133, 2008, doi:10.1016/J.IJREFRIG.2008.01.013.
  • H. Chen, DY. Goswami, and EK. Stefanakos, “A review of thermodynamic cycles and working fluids for the conversion of low-grade heat,” Renew Sustain Energy Rev., 4,3059–3067, 2010, doi:10.1016/j.rser.2010.07.006.
  • YY. Duan, L. Shi, LQ. Sun, MS. Zhu, and LZ. Han, “Thermodynamic Properties of Trifluoroiodomethane (CF13I)1,” Int. J. Thermophys., 21,393–404, 2000, doi:10.1023/A:1006683529436.
  • L. Benussi, S. Bianco, D. Piccolo, S. Colafranceschi, J. Kjølbro, A. Sharma, D. Yang, G. Chen, Y. Ban, and Q. Li “Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics,” J. Instrum., 13, P03012–P03012, 2018, doi:10.1088/1748-0221/13/03/P03012.
  • H. Guo, M. Gong, X. Dong, and J. Wu, “Measurements of (vapour+liquid) equilibrium data for {trifluoroiodomethane (R13I1) + isobutane (R600a)} at temperatures between (263.150 and 293.150) K,” J. Chem. Thermodyn., 58,428–431, 2013, doi:10.1016/j.jct.2012.10.003.
  • X. Dong, M. Gong, J. Liu, and J. Wu, “Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows,” J. Chem. Thermodyn., 43,505–510, 2011, doi:10.1016/J.JCT.2010.11.001.
  • Y. Maalem, S. Fedali, H. Madani, and Y. Tamene, “Performance analysis of ternary azeotropic mixtures in different vapor compression refrigeration cycles,” Int. J. Refrig., 119,139–151, 2020, doi:10.1016/j.ijrefrig.2020.07.021.
  • H. Li, F. Cao, X. Bu, L. Wang, and X. Wang, “Performance characteristics of R1234yf ejector-expansion refrigeration cycle,” Appl Energy., 121, 96-103,2014, doi:10.1016/j.apenergy.2014.01.079.
  • J. Sarkar, “Performance characteristics of natural-refrigerants- based ejector expansion refrigeration cycles,” Proc Inst Mech Eng Part A J Power Energy.,223, 543-550, 2009, doi.org/10.1243/09576509JPE753.
  • K. Sumeru, H. Nasution, and FN. Ani, “A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle,” Renew Sustain Energy Rev., 16,4927–4937, 2012, doi:10.1016/j.rser.2012.04.058.
  • S. He, Y. Li, and RZ. Wang, “Progress of mathematical modeling on ejectors,” Renew Sustain Energy Rev., 13,1760–1780, 2009, doi:10.1016/j.rser.2008.09.032.
  • A. Khalil, M. Fatouh, and E. Elgendy, “Ejector design and theoretical study of R134a ejector refrigeration cycle,” Int. J. Refrig., 34,1684–1698, 2011, doi:10.1016/j.ijrefrig.2011.01.005.
  • O. Brunin, M. Feidt, and B. Hivet, “Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump,” Int. J. Refrig.,20, 308-318, 1997, doi:10.1016/S0140-7007(97)00025-X.
  • Z. Zhang, L. Tong, L. Chang, Y. Chen, and X. Wang, “Energetic and Exergetic Analysis of an Ejector-Expansion Refrigeration Cycle Using the Working Fluid R32,” Entropy., 17, 4744-4761, 2015, doi:10.3390/e17074744.
  • J. Yu, H. Chen, Y. Ren, and Y. Li, “A new ejector refrigeration system with an additional jet pump,” Appl Therm Eng., 26,312–9, 2006, doi:10.1016/j.applthermaleng.2005.04.018.