Comparison Of The Electricity Generation Potentials Of Solar ORC Designed With Different Fluids Depending On Instantaneous Solar Radiation In Four Districts Of Türkiye

Comparison Of The Electricity Generation Potentials Of Solar ORC Designed With Different Fluids Depending On Instantaneous Solar Radiation In Four Districts Of Türkiye

In this study, the solar Organic Rankine Cycle (ORC) system was analyzed to meet some of the electrical energy needed in large and medium-sized buildings and large enterprises such as hotels from solar energy. A simulation study was conducted for different districts in Türkiye that are rich in solar energy potential. These counties and the provinces they are affiliated with; Silifke-İçel, Alanya-Antalya, Bodrum-Muğla, Çeşme-İzmir. The power value transferred to the ORC was determined by considering the instantaneous radiation values and sunshine durations for the districts. The performance of solar ORC was determined by comparing fluids from three different organic fluid types. Organic fluids and types used in design; benzene-aromatic hydrocarbon, cyclohexane-alkane, octamethylcyclotetrasiloxane (D4)-siloxane. Considering the maximum electrical energy values obtained from Solar ORC in the summer months, it was seen that 205 MWh electricity generated was obtained for Silifke with benzene at a heat source temperature of 223 oC in July. Maximum solar parabolic trough collector (PTC) specific electric power value was determined as 59.52 W/m2 in Alanya district with benzene in June. When the four districts are evaluated together, it has been determined that benzene performs better than cyclohexane by 3.8% on average and 23% better than D4. When the annual electrical energy values are examined, the highest production was determined as 1625 MWh with benzene fluid in Alanya district.

___

  • M.H. Jahangir, S.A. Mousavi, M. Amin, V. Rad, “A techno-economic comparison of a photovoltaic / thermal organic Rankine cycle with several renewable hybrid systems for a residential area in Rayen, Iran,” Energy Convers. Manag., 195, 244-261, 2019, doi:10.1016/j.enconman.2019.05.010.
  • C. Kutlu, J. Li, Y. Su, Y. Wang, G. Pei, S. Riffat, “Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors,” Energy, 203, 117873, 2020, doi:10.1016/j.energy.2020.117873.
  • V.R. Patil, V.I. Biradar, R. Shreyas, P. Garg, M.S. Orosz, N.C. Thirumalai, “Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage,” Renew. Energy, 113, 1250-1260, 2017, doi:10.1016/j.renene.2017.06.107.
  • D.M. Cakici, A. Erdogan, C.O. Colpan, “Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors,” Energy, 120, 306-319, 2017, doi:10.1016/j.energy.2016.11.083.
  • J. Yang, J. Li, Z. Yang, Y. Duan, “Thermodynamic analysis and optimization of a solar organic Rankine cycle operating with stable output,” Energy Convers. Manag., 187, 459-471, 2019, doi:10.1016/j.enconman.2019.03.021.
  • A. Ustaoglu, J. Okajima, X. Zhang, S. Maruyama, “Assessment of a solar energy powered regenerative organic Rankine cycle using compound parabolic involute concentrator,” Energy Convers. Manag., 184, 661-670, 2019, doi:10.1016/j.enconman.2019.01.079.
  • M. Elakhdar, H. Landoulsi, B. Tashtoush, E. Nehdi, L. Kairouani, “A combined thermal system of ejector refrigeration and Organic Rankine cycles for power generation using a solar parabolic trough,” Energy Convers. Manag., 199, 111947, 2019, doi:10.1016/j.enconman.2019.111947.
  • A. Arteconi, L. Del Zotto, R. Tascioni, K. Mahkamov, C. Underwood, L.F. Cabeza, J.M. Maldonado, R. Manca, A.C. Mintsa, C.M. Bartolini, T. Gimbernat, T. Botargues, E. Halimic, L. Cioccolanti, “Multi-country analysis on energy savings in buildings by means of a micro-solar organic rankine cycle system: A simulation study.” Environments, 5(11), 119, 2018, doi:10.3390/environments5110119.
  • D. Dragomir-Stanciu, S.M. Saghebian, A. Kurchania, “The influence of condensing temperature on the efficiency of solar power systems with ORC,” Procedia Manufacturing, 46, 359-363, 2020, doi:10.1016/j.promfg.2020.03.052.
  • M. Petrollese, G. Cau, D. Cocco, “The Ottana solar facility: dispatchable power from small-scale CSP plants based on ORC systems,” Renew. Energy, 147, 2932-2943, 2020, doi:10.1016/j.renene.2018.07.013.
  • T.C. Roumpedakis, G. Loumpardis, E., Monokrousou, K. Braimakis, A. Charalampidis, S. Karellas, “Exergetic and economic analysis of a solar driven small scale ORC,” Renew. Energy 157, 1008-1024, 2020, doi:10.1016/j.renene.2020.05.016.
  • A. Atiz, M. Karakilcik, “Comparison of heat efficiency of flat-plate and vacuum tube collectors integrated with Organic Rankine Cycle in Adana climate conditions,” Pamukkale Univ. J. Eng. Sci. 26(1), 106-112, 2020, doi:10.5505/pajes.2019.34033.
  • F. Yilmaz, M. Ozturk, R. Selbas, “Design and thermodynamic modeling of a renewable energy based plant for hydrogen production and compression,” Int. J. Hydrogen Energy, 45, 26126-26137, 2020, doi:10.1016/j.ijhydene.2019.12.133.
  • Y. Cao, A.M. Mohamed, M. Dahari, M. Delpisheh, M.A. Haghghi, “Performance enhancement and multi-objective optimization of a solar-driven setup with storage process using an innovative modification,” J. Energy Storage, 32, 101956, 2020, doi:10.1016/j.est.2020.101956.
  • A. Atiz, H. Karakilcik, M. Erden, M. Karakilcik, “Assessment of power and hydrogen production performance of an integrated system based on middle-grade geothermal source and solar energy,” Int. J. Hydrogen Energy, 46, 272-288, 2021, doi:10.1016/j.ijhydene.2020.10.016.
  • Z. Aghaziarati, A.H. Aghdam, “Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle,” Renew. Energy, 164, 1267-1283, 2021, doi:10.1016/j.renene.2020.10.106.
  • F. Mahmood, T.A. Al-Ansari, “Design and thermodynamic analysis of a solar powered greenhouse for arid climates,” Desalination, 497, 114769, 2021, doi:10.1016/j.desal.2020.114769.
  • N.B. Desai, H. Pranov, F. Haglind, “Techno-economic analysis of a foil-based solar collector driven electricity and fresh water generation system,” Renew. Energy, 165, 642-656, 2021, doi:10.1016/j.renene.2020.11.043.
  • M.A. Ancona, M. Bianchi, L. Branchini, A. De Pascale, F. Melino, A. Peretto, C. Poletto, & N. Torricelli, “Solar driven micro-ORC system assessment for residential application,” Renewable Energy, 195, 167-181, 2022, doi:10.1016/j.renene.2022.06.007.
  • Y. Aryanfar, M.E.H. Assad, A. Khosravi, R.S.M. Atiqure, S. Sharma, J.L.G. Alcaraz, & R. Alayi, “Energy, exergy and economic analysis of combined solar ORC-VCC power plant,” International Journal of Low-Carbon Technologies, 17, 196-205, 2022, doi:10.1093/ijlct/ctab099.
  • K. Mirjavadi, F. Pourfayaz, P. Pourmoghadam, & A. Kasaeian, “A comparison of using organic Rankine and Kalina cycles as bottom cycles in a solar-powered steam Rankine cycle,” Energy Science and Engineering, 10(8), 2714-2731, 2022, doi:10.1002/ese3.1161.
  • M. Rostami, M.D. Manshadi, & E. Afshari, “Energy production and storage from a polygeneration system based on parabolic trough solar collector, proton exchange membrane fuel cell, organic Rankine cycle, and alkaline electrolyzer,” Journal of Energy Storage, 47, 103635, 2022, doi:10.1016/j.est.2021.103635.
  • O. Kara, “An Evaluation of a New Solar-Assisted and Ground-Cooled Organic Rankine Cycle (ORC) with a Recuperator.” Arabian Journal for Science and Engineering, 2023, doi: 10.1007/s13369-022-07596-6.
  • P. Pourmoghadam, A. Kasaeian, “Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors,” Energy, 262, 125362, 2023, doi: 10.1016/j.energy.2022.125362.
  • F. Khalid, R. Kumar, “Thermodynamic assessment of a new PTC operated polygeneration system for fresh water, cooling, electricity and hydrogen production for a residential community,” International Journal of Hydrogen Energy. 2023, doi: 10.1016/j.ijhydene.2023.03.176.
  • F. Alshammari, N. Ben Khedher, & L. Ben Said, “Development of an automated design and off-design radial turbine model for solar organic Rankine cycle coupled to a parabolic trough solar collector,” Applied Thermal Engineering, 230, 120677, 2023, doi: 10.1016/j.applthermaleng.2023.120677.
  • O. Kara, “Evaluation of solar source and ground cooling performance in three different organic rankine cycle (ORC) configurations,” Journal of Thermal Analysis and Calorimetry, 148, 4401–4425, 2023, doi: 10.1007/s10973-023-11974-z.
  • H. Yağlı, Y. Koç, & H. Kalay, “Optimisation and exergy analysis of an organic Rankine cycle (ORC) used as a bottoming cycle in a cogeneration system producing steam and power,” Sustainable Energy Technologies and Assessments, 44, 100985, 2021, doi: 10.1016/j.seta.2020.100985.
  • I. Vaja, & A. Gambarotta, “Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs),” Energy, 35, 1084-1093, 2010, doi: 10.1016/j.energy.2009.06.001.
  • C. Carcasci, R. Ferraro, & E. Miliotti, “Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines,” Energy, 65, 91-100, 2014, doi: 10.1016/j.energy.2013.11.080
  • H.M.D.P. Herath, M.A. Wijewardane, R.A.C.P. Ranasinghe, & J.G.A.S. Jayasekera, “Working fluid selection of Organic Rankine Cycles,” Energy Reports, 6, 680-686, 2020, doi. 10.1016/j.egyr.2020.11.150.
  • C. Tzivanidis, E. Bellos, K.A. Antonopoulos, “Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant,” Energy Conversion and Management, 126, 421-433, 2016, doi:10.1016/j.enconman.2016.08.033.
  • J. Song, & C.-w. Gu, “Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery,” Energy Conversion and Management, 105, 995-1005, 2015, doi: 10.1016/j.enconman.2015.08.074.
  • G. Xu, G. Song, X. Zhu, W. Gao, H. Li, & Y. Quan, “Performance evaluation of a direct vapor generation supercritical ORC system driven by linear Fresnel reflector solar concentrator,” Applied Thermal Engineering, 80, 196-204,2015, doi:10.1016/j.applthermaleng.2014.12.071.
  • A. Uusitalo, T. Turunen-Saaresti, J. Honkatukia, P. Colonna, and J. Larjola, "Siloxanes as Working Fluids for Mini-ORC Systems Based on High-Speed Turbogenerator Technology," ASME. J. Eng. Gas Turbines Power, 135(4), 042305, 2013, doi:10.1115/1.4023115.
  • A.M. Delgado-Torres, & L. García-Rodríguez, “Preliminary assessment of solar organic Rankine cycles for driving a desalination System,” Desalination, doi: 216, 252-275, 2007, 10.1016/j.desal.2006.12.011.
  • Y. Liang, G. Shu, H. Tian, H. Wei, et al., "Thermodynamic Analysis of an Electricity-Cooling WHR Cogeneration System Aboard Ships using Siloxanes as Working Fluids," SAE Technical Paper, 2014-01-1946, 2014, doi:10.4271/2014-01-1946.
  • Güneş Enerjisi Potansiyeli Atlası (GEPA) [Online] Available: https://gepa.enerji.gov.tr/MyCalculator/ (accessed Jan. 3, 2023).
  • Y. Peng, X. Lin, J. Liu, W. Su, & N. Zhou, “Machine learning prediction of ORC performance based on properties of working fluid,” Applied Thermal Engineering, 195, 117184, 2021, doi:10.1016/j.applthermaleng.2021.117184.
  • D. Vera, F. Jurado, J. Carpio, & S. Kamel, S. “Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry,” Energy, 144, 41-53, 2018, doi:10.1016/j.energy.2017.11.152.
  • Fluid Safety Data Sheets [Online]. Available: https://www.fishersci.com/us/en/home.html (accessed June. 6, 2023).
  • S. Klein, EES-Engineering Equation Solver, F-Chart Softw, 2020.
  • Y.A. Çengel, M.A. Boles, Thermodynamics: An engineering approach 6th Editon (SI Units). New York.: The McGraw-Hill Companies Inc; 2008.
  • S.A. Kalogirou, “Parabolic trough collectors for industrial process heat in Cyprus,” Energy, 27, 813-830, 2002, doi: 10.1016/S0360-5442(02)00018-X
  • E. Georges, S. Declaye, O. Dumont, S. Quoilin, & V. Lemort, “Design of a small-scale organic rankine cycle engine used in a solar power plant,” International Journal of Low-Carbon Technologies, 8, 34-41, 2013, doi: 10.1093/ijlct/ctt030.
  • J. Yang, J. Li, Z. Yang, & Y. Duan, “Thermodynamic analysis and optimization of a solar organic Rankine cycle operating with stable output,” Energy Conversion and Management, 187, 459-471, 2019, doi: 10.1016/j.enconman.2019.03.021.
  • W. Zhao, N. Xie, W. Zhang, J. Yue, L. Wang, X. Bu, H. Li, “Performance characteristics and working fluid selection for high-temperature organic Rankine cycle driven by solar parabolic trough collector,” International Journal of Low-Carbon Technologies, 16(4), 1135-1149, 2021, doi: 10.1093/ijlct/ctab036.
  • Wang, K., A.M. Pantaleo, M. Herrando, M. Faccia, I. Pesmazoglou, B.M. Franchetti, & C.N. Markides, “Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms,” Renewable Energy, 159, 1047-1065, 2020, doi: 10.1016/j.renene.2020.05.120.
  • F. Calise, D. Capuano, & L. Vanoli, “Dynamic simulation and exergo-economic optimization of a hybrid solar-geothermal cogeneration plant,” Energies, 8(4), 2606-2646, 2015, doi: 10.3390/en8042606.