Design of a Coal Drying System with Solar-Assisted Heat Pump and Waste Heat Utilisation

Design of a Coal Drying System with Solar-Assisted Heat Pump and Waste Heat Utilisation

The increase in global energy demand has directed researchers towards making low-quality coals into an environmentally friendly energy source by reducing their high moisture content. Drying coal is a high-energy and time-consuming process, so reducing the required energy and drying time is crucial for drying technology. Coal drying increases the thermal value of coal and makes it easier to transport. In this study, a coal drying system was designed using waste heat recovery systems, R-134a refrigerant as working fluid, air source heat pumps, and vacuum tube solar collectors to provide hot air. Firstly, the moisture content of the coal and the desired moisture content after drying were determined, and then the heat required to dry the coal was calculated. Next, the capacity of the solar collector required to provide the necessary heat to the heat pump was determined, and the type and capacity of the heat pump that could produce the required heat were selected. Finally, the coal dryer was designed based on the specific requirements of the power plant and the type of coal used. As a result, the coal drying system designed with solar-assisted heat pumps and waste heat utilization can increase the efficiency of coal-fired power plants by reducing the moisture content of coal before combustion.

___

  • G.V. Kuznetsov, G.S. Nyashina, P.A. Strizhak, T.R. Valiullin, “Experimental Research into the Ignition and Combustion Characteristics of Slurry Fuels Based on Dry and Wet Coal Processing Waste,” J. of the Energy Inst., 97, 213-224, 2021.
  • H. Hacıfazlıoğlu, B. Bolat, “Linyit Kömürün Kurutulması için Karbonik Film Teknolojili Yeni Bir Kurutucu Tasarımı,” Fırat Üniversitesi Müh. Bil. Der., 33 (1), 173-183, 2021.
  • T. Hosseini, L. Zhang, “Process Modeling and Techno-Economic Analysis of a Solar Thermal Aided Low-Rank Coal Drying-Pyrolysis Process,” Fuel Proces. Tech., 220, 106896, 2021.
  • H. Kim, J. Choi, H. Lim, J. Song, “Liquid Carbon Dioxide Drying and Subsequent Combustion Behavior of High-Moisture Coal at High Pressure,” App. Therm. Eng., 207, 118182, 2022.
  • Q. Chen, J. Hu, H. Yang, D. Wang, H. Liu, X. Wang, H. Chen, “Experiment and Simulation of the Pneumatic Classification and Drying of Coking Coal in a Fluidized Bed Dryer,” Chem. Eng. Sci., 214, 115364, 2020.
  • S.H. Moon, I.S. Ryu, S.J. Lee, T.I. Ohm, “Optimization of Drying of Low-Grade Coal with High Moisture Content Using a Disc Dryer,” Fuel Proces. Tech., 124, 267-274, 2014.
  • M. Yahya, A. Rachman, R. Hasibuan, “Performance Analysis of Solar-Biomass Hybrid Heat Pump Batch-Type Horizontal Fluidized Bed Dryer Using Multi-Stage Heat Exchanger for Paddy Drying,” Energy, 254(B), 124294, 2022. M. Kuan, Y. Shakir, M. Mohanraj, Y. Belyayev, S. Jayaraj, A. Kaltayev, “Numerical Simulation of a Heat Pump Assisted Solar Dryer for Continental Climates,” Renew. Energy, 143, 214-225, 2019.
  • A. Singh, J. Sarkar, R.R. Sahoo, “Experimentation on Solar-Assisted Heat Pump Dryer: Thermodynamic, Economic and Exergoeconomic Assessments,” Solar Energy, 208, 150-159, 2020.
  • A. Khanlari, H.Ö. Güler, A.D. Tuncer, C. Şirin, Y.C. Bilge, Y. Yılmaz, A. Güngör, “Experimental and Numerical Study of the Effect of İntegrating Plus-Shaped Perforated Baffles to Solar Air Collector in Drying Application,” Renew. Energy, 145, 1677-1692, 2020.
  • A.D. Tuncer, A. Khanlari, A. Sözen, E.Y. Gürbüz, C. Şirin, A. Güngör, “Energy-Exergy and Enviro-Economic Survey of Solar Air Heaters with Various Air Channel Modifications,” Renew. Energy, 160, 67-85, 2020.
  • E. Çiftçi, A. Khanlari, A. Sözen, İ. Aytaç, A.D. Tuncer, “Energy and Exergy Analysis of a Photovoltaic Thermal (PVT) System Used in Solar Dryer: A Numerical and Experimental Investigation,” Renew. Energy, 180, 410-423, 2021.
  • A. Khanlari, A. Sözen, F. Afshari, C. Şirin, A.D. Tuncer, A. Güngör, “Drying Municipal Sewage Sludge with V-Groove Triple-Pass and Quadruple-Pass Solar Air Heaters Along with Testing of a Solar Absorber Drying Chamber,” Sci. of The Total Env., 709, 136198, 2020.
  • M. Aktaş, S. Şevik, M.B. Özdemir, E. Gönen, “Performance Analysis and Modeling of a Closed-Loop Heat Pump Dryer for Bay Leaves Using Artificial Neural Network,” App. Therm. Eng., 87, 714-723, 2015.
  • M. Aktaş, S. Şevik, A. Amini, A. Khanlari, “Analysis of Drying of Melon in a Solar-Heat Recovery Assisted Infrared Dryer,” Solar Energy, 137, 500-515, 2016.
  • M. Aktaş, S. Şevik, B. Aktekeli, “Development of Heat Pump and Infrared-Convective Dryer and Performance Analysis for Stale Bread Drying,” Energy Conv. and Manag., 113, 82-94, 2016.,
  • M. Aktaş, A. Khanlari, B. Aktekeli, A. Amini, “Analysis of a New Drying Chamber for Heat Pump Mint Leaves Dryer,” Int. J. of Hydrogen Energy, 42, 18034-18044, 2017.
  • M.B. Özdemir, M. Aktaş, S. Şevik, A. Khanlari, “Modeling of a Convective-Infrared Kiwifruit Drying Process,” Int. J. of Hydrogen Energy, 42, 18005-18013, 2017.
  • M. Aktaş, A. Khanlari, A. Amini, S. Şevik, “Performance Analysis of Heat Pump and Infrared–Heat Pump Drying of Grated Carrot Using Energy-Exergy Methodology,” Energy Conv. and Manag., 132, 327-338, 2017.
  • M. Tokdemir, K. Boran, M. Aktaş, S.P. Alkaç, “Isı Pompalı Kurutma Tekniği ile Toz Elma ve Elma Cipsi Üretimi: Performans Analizi,” Poli. Der., 21(4), 887-894, 2018.
  • G. Ünlü, K. Boran, M. Aktaş, A. Khanlari, “Infrared Enerjili - Isı Pompalı PLC Kontrollü Bir Kurutucuda Kabak Çekirdeği Kurutulması,” Poli. Der., 21(3), 519-525, 2018.
  • L. Taşeri, M. Aktaş, S. Şevik, M. Gülcü, G. Uysal Seçkin, B. Aktekeli, “Determination of Drying Kinetics and Quality Parameters of Grape Pomace Dried with a Heat Pump Dryer,” Food Chem,, 260, 152-159, 2018.
  • S.P. Alkaç, K. Boran, M. Aktaş, M. Tokdemir, “Isı Pompalı İnfrared Kurutucuda Dilimlenmiş Limonun Kurutulmasının Performans Analizi,” Gazi Müh, Bil. Der., 5(2), 128-137, 2019.
  • S. Şevik, M. Aktaş, E.C. Dolgun, E. Arslan, A.D. Tuncer, “Performance Analysis of Solar and Solar-Infrared Dryer of Mint and Apple Slices Using Energy-Exergy Methodology,” Solar Energy, 180, 537-549, 2019.
  • M. Koşan, M. Demirtaş, M. Aktaş, E. Dişli, “Performance Analyses of Sustainable PV/T Assisted Heat Pump Drying System,” Solar Energy, 199, 657-672, 2020.
  • G. Karaca, E.C. Dolgun, M. Aktaş, “Balın Kurutulması için Enerji Verimli ve Hijyenik Yeni Bir Sistem Tasarımı,” Poli. Der., 23(3), 713-719, 2020.
  • G. Karaca Dolgun, M. Aktaş, E.C. Dolgun, “Infrared Convective Drying of Walnut With Energy-Exergy Perspective,” J. of Food Eng., 306, 110638, 2021.
  • F. Gacal. “Lignite coal: Health Impacts and Recommendations from the Health Industry.” Health and Environment Alliance (HEAL). https://www.env-health.org/wp-content/uploads/2018/12/HEAL-Lignite-Briefing-TR-web.pdf (accessed Jan. 10, 2022).
  • M. Karthikeyan, W. Zhonghua, A.S. Mujumdar, “Low-Rank Coal Drying Technologies Current Status and New Developments,” Dry. Tech., 27, 403–415, 2009.
  • Pikon, J., Mujumdar, A.S. “Drying of Coal”, In Handbook of Industrial Drying, 3rd Ed; Mujumdar, A.S., Ed.; CRC Press: Boca Raton, FL, 993–1016, 2006.
  • L. Yuan, A.C. Smith, “The Effect of Ventilation on Spontaneous Heating of Coal,” J. of Loss Prev. in the Process Indust., 25, 131-137, 2012.
  • G. Qi, D. Wang, K. Zheng, J. Xu, X. Qi, X. Zhong, “Kinetics Characteristics of Coal Low-Temperature Oxidation in Oxygen-Depleted Air,” J. of Loss Prev. in the Process Indust., 35, 224-231, 2015.
  • Rahman, M., Kurian, V., Pudasainee, D., and Gupta, R. “A Comparative Study on Lignite Coal Drying by Different Methods,” Int. J. of Coal Prep. and Util., 40(2), 90-106, 2020.
  • Halim, A., Widyanti, A.A., Wahyudi, C.D., Martak, F., Septiani, E.L. “A Pilot Plant Study of Coal Dryer: Simulation and Experiment,” ASEAN J. of Chem. Eng., 22(1), 124-140, 2022.
  • Karthikeyan, M., Zhonghua, W., Mujumdar, A. S.,” Low-Rank Coal Drying Technologies Current Status and New Developments,” Dry. Tech., 27, 403–415, 2009.
  • Li, C. Z.. “Advances in The Science of Victorian Brown Coal”, Oxford: Elsevier, 2004.
  • Bratek, K., Bratek, W., Gerus-Piasecka, I., Jasieńko, S., Wilk, P., “Properties and Structure of Different Rank Anthracites,” Fuel, 81, 97–108, 2002.
  • Osman, H., Jangam, S. V., Lease, J. D., Mujumdar, A. S., “Drying of Low-Rank Coal (LRC): A Review of Recent Patents and Innovations,” M3TC Report, National University of Singapore, 2011.
  • Jentzsch, B., Höhne, O., Porsche, T., “Experiences with Drying of Lignite in a Pressurized Steam Fluidized Bed Pilot Plant,” 2nd Oxyfuel Combustion Conference, Queensland, Australia, Sep 12–16, 2011.
  • Willson, W. G., Walsh, D., Irwinc, W., “Overview of Low-Rank Coal (LRC) Drying,” Int. J. of Coal Prep. and Utili., 18, 1–15, 1997.
  • Z. Li, Y. Zhang, X. Jiang, Y. Zhang, L. Chang, “Insight into the Intrinsic Reaction of Brown Coal Oxidation at Low Temperature: Differential Scanning Calorimetry Study,” Fuel Process. Tech., 147, 64–70, 2016.
  • İnci Enerji. “Kömür analizleri.” http://www.incienerji.com/index.php?sayfa=komur-analizleri (accessed Jan. 10, 2022).
  • Çetinay Madencilik. “Kısrakdere kömürü.” https://cetinaymadencilik.com/urun/10-18-findik-komur/ (accessed Mar. 10, 2023).
  • Ceylan, İ. (2007). Programlanabilir (PLC) Isı Pompalı Kurutucunun Tasarımı, İmalatı ve Kereste Kurutma İşleminde Deneysel İncelenmesi (Doktora tezi), Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • E. Yalçın, M.Z. Söğüt, A. Kılıç, H. Bulgurcu, “Poliüretan Panelli Soğuk Depo Uygulamalarında Isı Köprüleri Oluşumu ve Isıl Analizi,” Tes. Müh. Der., 144, 69-79, 2014.
  • Nuh Yapı. “Gaz beton özellikleri.” https://www.nuhyapi.com.tr/teknik-ozellikler (accessed Jan. 10, 2022).
  • M. Aktaş, İ. Ceylan, H. Doğan, “Isı Pompalı Endüstriyel Fındık Kurutma Fırınının Modellenmesi,” Poli. Der., 8(4), 329-336, 2005.
  • M. Aktaş, “Güneş Enerjisi ve Isı Pompası Destekli Bir Kurutucuda Kırmızıbiber Kurutulmasının Deneysel İncelenmesi,” Poli. Der., 13(1), 1-6, 2010.
  • Aksoy, A. (2019). Farklı Kurutma Yöntemlerinin Kıymanın Kurutma Kinetiği, Mikroyapısı, Rengi ve Rehidrasyon Oranı Üzerine Etkisi (Doktora tezi), Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Kırbaş, C. “Psikrometrik diyagram ve uygulamaları.” MMO Kocaeli. https://www1.mmo.org.tr/resimler/dosya_ekler/19982ccdd9f6003_ek.pdf (accessed Jan. 10, 2022).
  • Ü. İpekoğlu, H. Polat, “Susuzlandırma, Cevher Hazırlama El Kitabı,” YMGV Yayını, Bölüm 16, 335-370, 2014.
  • Erdöl Aydın, N. (2000). Sabit Yataklı Yakma Sistemlerinde Yanmada Kömür Neminin Etkisinin Deneysel İncelenmesi (Doktora tezi), İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • M. Altıner, M. Yıldırım, “Afşin-Elbistan Linyitinin Kurutulması ve Nem İçeriğinin Darbe Dayanımına Etkisi,” Çukurova Üniversitesi Fen ve Müh. Bil. Der., 26(3), 19-28, 2011.
  • N. Yamankaradeniz, S. Coşkun, B. Pastakkaya, M. Can, “Isı Pompası Destekli Kurutma Sistemlerinde By-Pass Oranının Kurutma Performansına Etkisinin Deneysel Analizi,” Uludağ Üniversitesi Müh.-Mim. Fak. De., 17(2), 17-36, 2012.
  • B. Acar, E. Öz, E. Gedi̇k, “Ayrık ve Birleşik Isı Borulu Kollektör Verimlerinin Deneysel Olarak İncelenmesi,” Gazi Üniversitesi Müh. Mim. Fak. Der., 23(2), 425-429, 2013.
  • Anonim. “Havanın özgül ısısı.” https://psikrometri.com/3-psikrometrik-ozellikler-ve-terimler/ (accessed Jan. 10, 2022).
  • Kazancı, O.V. (2008). Kömürün Kendi Kendine Yanmasında Mineral Maddenin Etkisi (Yüksek lisans tezi), İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • MGM. “Manisa ili çevre sıcaklığı.” https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=MANISA (accessed Jan. 10, 2022).
  • Anonim. “Termik santraller.” https://tr.wikipedia.org/wiki/Termik_santral (accessed Jan. 10, 2022).
  • Anonim. “Fan gücü.” https://www.bvnair.com/fiyatlistesi2021.pdf (accessed Jan. 10, 2022).