Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate

Quercetin and its metal complexes have anti-oxidation, anti-bacterial, anti-tumor, and kinds of enzymatic activities. Studies in recent years, these activities are very important for health and pharmaceutics. The purpose of this manuscript is to determine the structure-activity relations and antioxidant properties of the Quercetin and Quercetin-Co2+ chelate from a theoretical view and to be used these compounds in the treatment of the diseases. We found that Quercetin is more stable than Quercetin-Co2+ chelate but Quercetin-Co2+ chelate is more conductive and the O22-H bond of the Quercetin molecule has the highest antioxidant activity. The remarkable electron delocalization occurred between the donor (C17-C19) anti bond and acceptor (C13-C15) anti bond with 319.62 kcal/mol stabilization energy in Quercetin.

Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate

Quercetin and its metal complexes have anti-oxidation, anti-bacterial, anti-tumor, and kinds of enzymatic activities. Studies in recent years, these activities are very important for health and pharmaceutics. The purpose of this manuscript is to determine the structure-activity relations and antioxidant properties of the Quercetin and Quercetin-Co2+ chelate from a theoretical view and to be used these compounds in the treatment of the diseases. We found that Quercetin is more stable than Quercetin-Co2+ chelate but Quercetin-Co2+ chelate is more conductive and the O22-H bond of the Quercetin molecule has the highest antioxidant activity. The remarkable electron delocalization occurred between the donor (C17-C19) anti bond and acceptor (C13-C15) anti bond with 319.62 kcal/mol stabilization energy in Quercetin.

___

  • Afanas’eva, I.B., Ostrakhovitch, E.A., Mikhal’chik, E.V., Ibragimova, G.A., & Korkina, L.G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem. Pharmacol., 61, 677–684. https://doi.org/10.1016/s0006-2952(01)00526-3
  • Bravo, A., & Anacona, J.R. (2001). Metal complexes of the flavonoid quercetin: Antibacterial properties. Transit. Metal Chem., 26, 20–23. https://doi.org/10.3390/molecules20058583
  • Chen, W.J., Sun, S.F., Cao, W., Liang, Y., & Song, J.R. (2009). The antioxidant property of quercetin Cr (III) complex: The role of Cr(III) ion. J. Mol. Struct., 918, 194–197. https://doi.org/10.15171/bi.2019.15
  • Cornard, J.P., & Merlin, J.C. (2002). Spectroscopic and structural study of complexes of quercetin with Al (III). J. Inorg. Biochem., 92, 19–27. https://doi.org/10.1016/s0162-0134(02)00469-5
  • Dehghan, G., Dolatabadi, J.E.N., Jouyban, A., Zeynali, K.A., Ahmadi, S.M., & Kashanian, S. (2011). Spectroscopic Studies on the Interaction of Quercetin-Terbium(III) Complex with Calf Thymus DNA. DNA Cell Biol., 30, 195–201. https://doi.org/10.1089/dna.2010.1063
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, Version 6, Copyright Semichem, Inc.
  • Dolatabadi, J.E.N. (2011). Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int. J. Biol. Macromol., 48, 227 233. https://doi.org/10.1016/j.ijbiomac.2010.11.012
  • El Hajji, H., Nkhili, E., Tomao, V., Dangles, O. (2006). Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radic. Res., 40, 303–320. https://doi.org/10.1080/10715760500484351
  • Frisch, M. J., et al., (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.
  • Grazul, M., & Budzisz, E. (2009). Biological activity of metal ions complexes of chromones, coumarins, and flavones. Coord. Chem. Rev., 253, 2588 2598. https://doi.org/10.1016/j.ccr.2009.06015
  • Joseph, L., Sajan, D., Chaitanya K., Suthan T., Rajesh, N.P., & Isaac J. (2014). Molecular structure, NBO analysis, electronic absorption, and vibrational spectral analysis of 2 Hydroxy 4 Methoxybenzophenone: Reassignment of fundamental modes. Spectrochim Acta A: Mol Biomol Spectrosc., 120, 216. https://doi.org/10.1016/j.saa.2013.09.128
  • Jurasekova, Z., Torreggiani, A., Tamba, M., Sanchez Cortes, S., & Garcia Ramos, J.V. (2009). Raman and surface enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: Evidence of structural changing processes in aqueous solution and on metal nanoparticles. J. Mol. Struct., 918, 129 137. https://doi.org/10.1016/j.molstruc.2008.07.025
  • Kasprzak, M. M., Erxlebenb, A., & Ochock, J. (2015). Properties and applications of flavonoid metal complexes. RSC Advances, 5, 45853- 45877. https://doi.org/10.1039/C5RA05069C
  • Kiraz, A. Ö., & Kaya, S. (2017). Structural and electrical properties of the Ca(PO 4)2 compound. Physical Sciences (NWSAPS) 12(1),8 21. https://doi.org/10.12739/NWSA.2017.12.2.3A0079
  • Kiraz, A. Ö. (2019). Temperature Effect of the Theobromine’s electronic and antioxidant properties. Int. J. Sec. Metabolite, 6(1), 90-97. https://doi.org/10.21448/ijsm.504474
  • Kiraz, Aslı Öztürk, (2020). Theoretical insight into the antioxidant, electronic and anticancer behavior of simmondsin. IJBB, 57, 530-538.
  • Leopoldini, M., Russo, N., Chiodo, S., & Toscano, M. (2006). Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem., 54, 6343 6351. https://doi.org/10.1021/jf060986h
  • Leopoldini, M., Russo, N., & Toscano M. (2011). The molecular basis of the working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125, 288–306. https://doi.org/10.1016/j.foodchem.2010.08.012
  • Malesev, D., & Kuntic, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc., 72, 921–939. https://doi.org/10.2298/JSC0710921M
  • Mendoza, E.E. & Burd, R. (2011). Quercetin as a Systemic Chemopreventative Agent: Structural and Functional Mechanisms. Mini-Rev. Med. Chem., 11, 1216–1221. https://doi.org/10.2174/13895575111091216
  • Mira, L., Fernandez, M.T., Santos, M., Rocha, R., Florencio, M.H., & Jennings, K.R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 36, 1199–208. https://doi.org/10.1080/1071576021000016463.
  • Pai, C.L., Liu C.L., Chen, W.C., & Jenekhe, S. A. (2006). Electronic structure and properties of alternating donor-acceptor conjugated copolymers: 3,4-Ethylenedioxythiophene (EDOT) copolymers and model compounds. Polymer, 47, 699 – 708. https://doi.org/10.1016/j.polymer.2005.11.083
  • Snehalatha, M., Ravikumar, C., Joe, I., Sekar, N., & Jayajumar, V.S. (2009). Spectroscopic analysis and DFT calculations of a food additive carmoisine. Spectrochim Acta A: Mol Biomol Spectrosc., 72, 654–662. https://doi.org/10.1016/j.saa.2008.11.017
  • Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes. Biotechnol Food Sci., 76 (1), 35-41.
  • Tachibana M., Tanaka, S., Yamashita, Y., & Yoshizawa, K. (2002). Small Band-Gap Polymers Involving Tricyclic Nonclassical Thiophene as a Building Block. J. Phys. Chem. B, 106, (14), 3549–3556. https://doi.org/10.1021/jp0115906
  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chem. Rev., 105(8), 2999−3094. https://doi.org/10.1021/cr9904009
  • Torreggiani, A., Tamba, M., Trinchero, A., Bonora, S. (2005). Copper(II) quercetin complexes in aqueous solutions: Spectroscopic and kinetic properties. J. Mol. Struct., 744, 759 766. https://doi.org/10.1016/j.molstruc.2004.11.081.
  • Urbaniak, A., Molski, M., & Szeląg, M. (2012). Quantum-chemical Calculations of the Antioxidant Properties of trans-p-coumaric Acid and trans-sinapinic Acid. CMST, 18(2) 117-128. https://doi.org/10.12921/cmst.2012.18.02.117-128
  • Xu, G.R., In, Y.M., Yuan, Y., Lee, J.J., & Kim, S. (2007). In situ spectroelectrochemical study of quercetin oxidation and complexation with metal ions in acidic solutions. Bull. Korean Chem. Soc., 28, 889–892. https://doi.org/10.5012/bkcs.2007.28.5.889
  • Yalçın, F. (2019). [Theoretical Investigation of the Interactions Between Some Flavonoid Molecules and Metal Ions]. [Master Thesis, Pamukkale University].
  • Yamashita, N., Tanemura, H., & Kawanishi, S. (1999). Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu (II). Mutat. Res., 425, 107–115. https://doi.org/ 10.1016/s0027-5107(99)00029-9
  • Zade, S.S., & Bendikov, M. (2006). From Oligomers to Polymer: Convergence in the HOMO−LUMO Gaps of Conjugated Oligomers. Org. Lett., 8, 5243 5246. https://doi.org/10.1021/ol062030y
  • Zhang, Y.P., Shi, S.Y., Sun, X.R., Xiong, X., & Peng, M.J. (2011). The effect of Cu2+ on the interaction between flavonoids with different C-ring substituents and bovine serum albumin: Structure-affinity relationship aspect. J. Inorg. Biochem., 105, 1529–1537. https://doi.org/10.1016/j.jinorgbio.2011.08.007
  • Zhou, J., Wang, L.F., Wang, J.Y., & Tang, N. (2001). Antioxidative and anti-tumor activities of solid quercetin metal (II) complexes. Transit. Metal Chem., 26, 57–63. https://doi.org/ 10.1016/S0162-0134(00)00128-8
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

An Investigation of The Biological Activity of Monofloral Honey Produced in South-Western Anatolia

Şükrü KARATAŞ, Abdurrahman AKTÜMSEK, Mehmet Emin DURU

Phenolic profile, antioxidant and enzyme inhibitory activity of the ethyl acetate, methanol and water extracts of Capparis spinosa L.

Bulent KİRKAN, Olcay CEYLAN, Cengiz SARIKÜRKCÜ, Bektas TEPE

Chemical composition and antioxidant activities of essential oils and extracts from cones of Tetraclinis articulata (Vahl) Masters

Mohammed SABER, Hicham HARHAR, Latifa EL HATTABİ, Gokhan ZENGİN, Abdelhakim BOUYAHYA, Mohamed TABYAOUİ

Investigation of in vitro Enzyme Inhibitory Properties and Antioxidant Activity of Moltkia coerulea (Willd.) Lehm. (Boraginaceae) Growing in Raman Mountain - Batman

Alevcan KAPLAN

Biological activities and chemical composition of Xanthoria lichens from Turkey

Muzaffer MÜKEMRE, Gokhan ZENGİN, Rabia Sena TÜRKER, Ali ASLAN, Abdullah DALAR

Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate

Aslı ÖZTÜRK KİRAZ, Fatih YALÇIN

Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria

Salah BENKHERARA, Ouahiba BORDJIBA, Samiha HARRAT, Ali Boutlelis DJAHRA

Biological activity studies on Klasea serratuloides (DC) Greuter & Wagenitz subsp. karamanica B. Dogan & A. Duran extracts obtained with different extraction methods

Nuraniye ERUYGUR, Fatma AYAZ, Yavuz BAĞCI, Süleyman DOĞU, Tuğsen DOĞRU, Merve KOÇAK

A Study on the Possible Mutagenicity of Different Types of Plant Growth Regulators

Sevilay YAPICI, Güven URAZ, Ebru BEYZİ

Biological evaluation of Stachys iberica subsp. stenostachya (Boiss.) Rech.f. and Scutellaria orientalis subsp. sosnowskyi (Takht.) Fed. growing in eastern Anatolia

Gizem GULSOY TOPLAN, Ayşe CİVAŞ, Emel MATARACI KARA, Turgut TAŞKIN, Gülay Ecevit GENÇ