Inula viscosa L. (Asteraceae): A study on its antimicrobial and antioxidant activities, chromatographic fingerprinting profile

Food products contaminated with pathogens and spoiled not only lead to a decrease in the quality and quantity of food products but also contribute to the spread of diseases, which are increasingly becoming a public health problem in both developed and developing countries. Due to the multiple resistance of these pathogens to antibiotics, the search for natural products with antimicrobial properties is becoming increasingly important. Inula viscosa has been used as a medicinal plant for a long time in many Mediterranean countries. The aim of this study was to investigate the antimicrobial effects of I. viscosa extracts against foodborne pathogens and their non-enzymatic antioxidant potential. Antimicrobial activity was measured using the disc diffusion method. Additionally, plant extracts were tested against 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azinobis (3-ethyl-benzothiazoline 6-sulfonate) radicals for antioxidant activity. Inula viscosa showed the highest antibacterial activity against Bacillus subtilis with the methanol extract (19 mm zone diameter), while the lowest activity was observed against Salmonella Typhimurium, with inhibition zone diameters of 7 mm. The highest antioxidant activity was recorded as 77.5% for the DPPH• method and 73.8% for the ABTS• method. In conclusion, this plant can be considered a natural antimicrobial and antioxidant agent against foodborne pathogens, and it is a promising candidate for large-scale experiments.

Inula viscosa L. (Asteraceae): A study on its antimicrobial and antioxidant activities, chromatographic fingerprinting profile

Food products contaminated with pathogens and spoiled not only lead to a decrease in the quality and quantity of food products but also contribute to the spread of diseases, which are increasingly becoming a public health problem in both developed and developing countries. Due to the multiple resistance of these pathogens to antibiotics, the search for natural products with antimicrobial properties is becoming increasingly important. Inula viscosa has been used as a medicinal plant for a long time in many Mediterranean countries. The aim of this study was to investigate the antimicrobial effects of I. viscosa extracts against foodborne pathogens and their non-enzymatic antioxidant potential. Antimicrobial activity was measured using the disc diffusion method. Additionally, plant extracts were tested against 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azinobis (3-ethyl-benzothiazoline 6-sulfonate) radicals for antioxidant activity. Inula viscosa showed the highest antibacterial activity against Bacillus subtilis with the methanol extract (19 mm zone diameter), while the lowest activity was observed against Salmonella Typhimurium, with inhibition zone diameters of 7 mm. The highest antioxidant activity was recorded as 77.5% for the DPPH• method and 73.8% for the ABTS• method. In conclusion, this plant can be considered a natural antimicrobial and antioxidant agent against foodborne pathogens, and it is a promising candidate for large-scale experiments.

___

  • Aguiar, L.M., Geraldi, M.V., Betim C.C.B., & Maróstica J.M.R. (2019). Functional Food Consumption and its Physiological Effects. In M.R.S. Campos (Ed.) Bioactive Compounds. Woodhead Publishing. (pp. 205–225). https://doi.org/10.1016/B978-0-12-814774-0.00011-6
  • Andolfi, A., Zermane, N., Cimmino, A., Avolio, F., Boari, A., Vurro, M., & Evidente, A. (2013). Inuloxins A-D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: potential for broomrapes and field dodder management. Phytochemistry, 86(1), 112-120. https://doi.org/10.1016/j.phytochem.2012.10.003
  • Bauer, A.W., Kirby, W.M., Sherris, J.C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.
  • Biradar, S.R., & Rachetti, B.D. (2013). Extraction of some secondary metabolites & thin layer chromatography from different parts of Centella asiatica L. (URB). American Journal of Life Sciences, 1(6), 243-247. https://doi.org/10.11648/j.ajls.20130106.11
  • Birch, C.S., & Bonwick, G.A. (2018). Ensuring the future of functional foods. Int. J. Food Sci. Technol., 54(5), 1467-1485. https://doi.org/10.1111/ijfs.14060
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Chahmi, N., Anissi, J., Jennan, S., Farah, A., Sendide, K., & El Hassouni, M. (2015). Antioxidant activities and total phenol content of Inula viscosa extracts selected from three regions of Morocco. Asian Pacific Journal of Tropical Biomedicine, 5(3), 228-233. https://doi.org/10.1016/S2221-1691(15)30010-1
  • CLSI (Clinical and Laboratory Standards Institute). (2003). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; Approved standard M7-A. 6th edn. National Committee for Clinical Laboratory Standards, Wayne, Philadelphia.
  • CLSI (Clinical and Laboratory Standards Institute). (2006). Performance standards for antimicrobial susceptibility testing. 16th Informational supplement M100-S16. National Committee for Clinical Laboratory Standards, Wayne, Philadelphia.
  • Çolak, S., Çolak, S., Dağlı, F., Çömlekçioğlu, N., Kocabaş, Y.Z., & Aygan, A. (2020). Achillea aleppica subsp. aleppica’ nın farklı organlarından elde edilen ekstraktların antimikrobiyal aktivitesi ve bazı fitokimyasal özellikleri [Antimicrobial Activity and Some Phytochemical Properties of Extracts from Achillea aleppica subsp. Aleppica]. Gıda, 45(5), 929-941. https://doi.org/10.15237/gida.GD20048
  • Daliu, P., Santini, A., & Novellino, E. (2018). A decade of nutraceutical patents: where are we now in 2018. Expert Opinion on Therapeutic Patents, 28(12), 875 882. https://doi.org/10.1080/13543776.2018.1552260
  • Danino, O., Gottlieb, H.E., Grossman, S., & Bergman, M. (2009). Antioxidant activity of 1, 3dicaffeoylquinic acid isolated from Inula viscosa. Food Research International, 42(9), 1273-1280. https://doi.org/10.1016/j.foodres.2009.03.023
  • Davis, P.H. (1965-1988). Flora of Turkey and the East Aegean Islands. University Press. Vol: I-X. Edinburg.
  • Değirmenci, H., & Erkurt, H. (2020). Chemical profile and antioxidant potency of Citrus aurantium L. flower extracts with antibacterial effect against foodborne pathogens in rice pudding. LWT Food Science Technology, 126, 109273. https://doi.org/10.1016/j.lwt.2020.109273
  • Fontana, G., La Rocca, S., Passannanti, S., & Pia, P.M. (2007). Sesquiterpene compounds from Inula viscosa. Natural Product Research, 21(9), 824 827. https://doi.org/10.1080/14786410701415681
  • Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S.R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9, 1-9. https://doi.org/10.3389/fmicb.2018.01639
  • Gökbulut, A., Özhan, O., Satılmiş, B., Batçioğlu, K., Günal, S., & Şarer, E. (2013). Antioxidant and antimicrobial activities, and phenolic compounds of selected Inula species from Turkey. National Production Community, 8(4), 475-478.
  • Günter, Ü., Maçin, S., & Tuncer, E.İ. (2020). Çeşitli bitki ekstrelerinin antibakteriyel aktivitelerinin araştırılması [Investigation of antibacterial activities of various plant extracts]. Genel Tıp Dergisi, 30(3),184 189. https://search.trdizin.gov.tr/tr/yayin/detay/466311/
  • Grierson A.J.C. (1975). Inula L. In: Davis PH (ed.) Flora of Turkey and the East Aegean Islands, Vol. 5. Edinburgh: Edinburgh University Press, pp. 54–73.
  • He, L., Wu, Y., Lin, L., Wang, J., Wu, Y., Chen, Y., Yi, Z., Liu, M., & Pang, X. (2011). Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2‐mediated PI3K/Akt/mTOR signaling pathway. Cancer Science, 102(1), 219-225. https://doi.org/10.1111/j.1349-7006.2010.01778.x
  • Karamenderes, C., & Zeybek, U. (2000). Composition of the essential oils of Inula viscosa, I. graveolens and I. helenium subsp. turcoracemosa. Journal of Faculty of Pharmacy of Istanbul University, 33, 1-6. https://dergipark.org.tr/en/download/article-file/5202
  • Kheyar-Kraouche, N., daSilva, A.B., Serra, A.T., Bedjou, F., & Bronze, M.R. (2018). Characterization by liquid chromatography-mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. Journal of Pharmaceutical and Biomedical Analysis, 156, 297-306. https://doi.org/10.1016/j.jpba.2018.04.047
  • Kirk, M.D., Angulo, F.J., Havelaar, A.H., & Black, R.E. (2017). Diarrhoeal disease in children due to contaminated food. Bulletin World Health Organ, 95, 233–234. https://doi.org/110.2471/BLT.16.173229
  • Lianou, A., Panagou, E.Z., & Nychas, G.J. (2016). Microbiological spoilage of foods and beverages. In D. Kilcast and P. Subramaniam (Eds.), The Stability and Shelf Life of Food. (2nd ed.) (pp. 3-42). Woodhead Publishing, Amsdertam. https://doi.org/10.1016/C2015-0-06842-3
  • Mahmoudi, H., Hosni, K., Zaouali, W., Amri, I., Zargouni, H., Hamida, N.B., Kaddour, R., Hamrouni, L., Nasri, M.B., & Ouerghi, Z. (2016). Comprehensive phytochemical analysis, antioxidant and antifungal activities of Inula viscosa aiton leaves. Journal of Food Safety, 36(1), 77-88. https://doi.org/10.1111/jfs.12215
  • Mitic, V.D., Ilic, M.D., Stankov, J.V.P., Djordjevic, A.S., Markovic, M.S., & Stojanovic, G.S. (2020). Volatiles composition and antioxidant activity Inula oculus-christi L. from Serbia. Natural Product Research, 34(18), 2698 2701. https://doi.org/10.1080/14786419.2018.1550767
  • Mohti, H., Taviano, M.F., Cacciola, F., Dugo, P., Mondello, L., Marino, A., Crisafi, G., Benameur, Q., Zaid, A., & Miceli, N. (2020). Inula viscosa (L.) Aiton leaves and flower buds: effect of extraction solvent/technique on their antioxidant ability, antimicrobial properties and phenolic profile. Natural Product Research, 34(1), 46-52. https://doi.org/10.1080/14786419.2019.1569659
  • Najefi, R.B., Asghari, G., & Abbas, A. (2011). Antimicrobial activities of phenolic and non-phenolic fractions of Inula viscosa L. extract. Journal of Biologically Active Products from Nature, 1(5-6), 325331. https://doi.org/10.1080/22311866.2011.10719100
  • Ozkan, E., Karakas, F.P., Yildirim, A.B.B., Tas, I., Eker, I., Yavuz, M.Z., & Turker, A.U. (2019). Promising medicinal plant Inula viscosa L.: antiproliferative, antioxidant, antibacterial and phenolic profiles. Progress in Nutrition, 21(3), 652 661. https://doi.org/10.23751/pn.v21i3.7186
  • Özhan, O., Gökbulut, A., Gunal, S., & Sarer, E. (2013). Phenolic compounds and antimicrobial activity of Inula sarana Boiss. Planta Medica, 79(13), PJ56.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Reque, P., & Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: applications in functional food industry. Trends in Food Science & Technology, 114, 1 10. https://doi.org/10.1016/j.tifs.2021.05.022
  • Salim, H., Rimawi, W.H., & Mjahed, A. (2017). Analysis of extracts from Palestinian Inula viscosa for their phenolic, flavonoid and lipid contents, antioxidant and antibacterial activity. Journal of Chemistry and Biochemistry, 5(1), 12-23. https://doi.org/10.15640/jcb.v5n1a2
  • Sassi, A.B., Harzallah-Skhiri, F., & Aouni, M. (2007). Investigation of some medicinal plants from Tunisia for antimicrobial activities. Pharmaceutical Biology, 45(5), 421-428. https://doi.org/10.1080/13880200701215406
  • Talib, W.H., Zarga, M.H.A., and Mahasneh, A.M. (2012). Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules, 17(3), 3291-3303. https://doi.org/10.3390/molecules17033291
  • Talukdar, A.D., Choudhury, M.D., Chakraborty, M., and Dutta, B.K. (2010). Phytochemical screening and TLC profiling of plant extracts of Cyathea gigantea (Wall. Ex. Hook.) Haltt. and Cyathea brunoniana. Wall. ex. Hook. (Cl. & Bak.). Assam University J. Sci. & Technol.: Biol. Environ. Sci., 5(1), 70 74.
  • Tomar, O., & Yıldırım, G. (2019). Antimicrobial effect of red beet (Beta vulgaris var. Cruenta Alef.) on some foodborne pathogens. Turkish Journal of Agriculture-Food Science and Technology, 7(sp1), 54-60. https://doi.org/10.24925/turjaf.v7isp1.54-60.2690
  • Xie, J., Gao, H., Peng, J., Han, Y., Chen, X., Jiang, Q., & Wang, C. (2015). Hispidulin prevents hypoxiainduced epithelial-mesenchymal transition in human colon carcinoma cells. American Journal of Cancer Research, 5(3), 1047-1061.
  • Zingales, I. (1967). Systematic identification of psychotropic drugs by thin-layer chromatography. Part I. Journal of Chromatography A, 31, 405 419. https://doi.org/10.1016/s0021-9673(01)86090-8
  • Zingales, I. (1968). Systematic identification of psychotropic drugs by thin layer chromatography. Part II. Journal of Chromatography A, 34, 44 51. https://doi.org/10.1016/0021-9673(68)80007-x
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

Characterization and antibacterial activity of alkaloids and polyphenols extracts from Haplophyllum tuberculatum (Forssk.) A. Juss.

Djamila DJOUAHRA FAHEM, Souhila BENSMAIL, Razika BOUTELDJA, Messad SARA, Fatiha FERHOUM, Nassima BOURFIS, Fatma ACHEUK, Fethia FAZOUANE

Different methods of extraction of bioactive compounds and their effect on biological activity: A review

Imane GHENABZİA, Hadia HEMMAMİ, Ilham BEN AMOR, Soumeia ZEGHOUD, Bachir BEN SEGHİR, Rokaia HAMMOUDİ

Antioxidant and diuretic effects of flower extract of Laurus nobilis

Nor El Houda TAHİRİ, Asmae LAGHOUİZİ, Abderrazak ABOULGHAZİ, Najoua SOULO, Badiaa LYOUSSİ, Lalla Aicha LRHORFİ

Chemical composition, antioxidant, and antimicrobial activities of Bangladesh-origin Jhum-cultivar basil (Ocimum basilicum L.) essential oil

Suman BARUA, Kajalika DEWAN, Saiful ISLAM, Suman MOJUMDER, Ovi SİKDER, Rajib SARKAR, Hiroshi HASEGAWA, Ismail M.m. RAHMAN

Aroma profile of the essential oils from different parts of Pycnocycla aucherana Decne. ex Boiss.

Fatemeh ASKARİ, Fatemeh SEFİDKON, Zohreh EMAMİ BİSTGANİ, Mohamad Amin SOLTANİPOUR

Inula viscosa L. (Asteraceae): A study on its antimicrobial and antioxidant activities, chromatographic fingerprinting profile

Gülten ÖKMEN, Kutbettin ARSLAN, Rıdvan TEKİN

Investigation of the effect of using palm kernel powder in bread flour on quality parameters of flour

Yavuz YÜKSEL, Mustafa Kürşat DEMİR

Total polyphenols and antioxidant activity of yellow velvetleaf (Limnocharis flava) extract

Sabri SUDİRMAN, Mey ARİANTİ, Gama Dian NUGROHO, Sherly RİDHOWATİ, Puspa Ayu PİTAYATİ, Miftahul JANNA

Comparative chromatographic analysis of phenolic compounds of Liquidambar orientalis plant cultivated under in vitro salt stress

Muhammed Mustafa POLAT, Ergun KAYA, İbrahim KIVRAK

Antimicrobial potential of lemon and onion extracts against gram-positive and -negative bacteria

Nagomi GOPİNATH