In vitro investigations of biological activities of Thymus willdenowii and Thymus atlanticus polyphenol-rich extracts

Thyme species produce a wide variety of phenolic compounds including tannins, phenolic acids, and flavonoids. Thymus atlanticus (T. atlanticus) and Thymus willdenowii (T. willdenowii) are important thyme species in the southeast of Morocco, with numerous biological properties. The polyphenolic extracts of these two thyme species were obtained using ethanol through Soxhlet apparatus. Antioxidant (DPPH, FRAP, and TAC methods), antihemolytic (2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) induced hemolysis test), hypolipidemic (3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity inhibition test), and anti-inflammatory (protein denaturation inhibition) effects of extracts were carried out using in vitro methods. The results showed that the polyphenolic extracts of these two species revealed important amounts of phenolic compounds. The contents of flavonoids were significant in the two species, while the contents of tannins and anthocyanin were very low. T. atlanticus showed an important antioxidant activity and a considerable antihemolytic effect in AAPH-induced hemolysis test (IC50 = 0.29 mg/mL), while T. willdenowii showed an important anti-inflammatory activity in heat-induced protein denaturation test (IC50 = 1.61 mg/mL). Moreover, both extracts at a dose of 20 µg/mL showed an important in vitro hypolipidemic activity by inhibiting HMG-CoA reductase activity (T. willdenowii: 51.16 %; T. atlanticus: 62.83 %). In conclusion, T. willdenowii and T. atlanticus extracts have considerable antioxidant, antihemolytic, hypolipidemic, and anti-inflammatory effects. The richness of these species in polyphenols gives them a large specter of biological properties, making them a valuable source of natural bioactive compounds that could prevent or treat various diseases.

In vitro investigations of biological activities of Thymus willdenowii and Thymus atlanticus polyphenol-rich extracts

Thyme species produce a wide variety of phenolic compounds including tannins, phenolic acids, and flavonoids. Thymus atlanticus (T. atlanticus) and Thymus willdenowii (T. willdenowii) are important thyme species in the southeast of Morocco, with numerous biological properties. The polyphenolic extracts of these two thyme species were obtained using ethanol through Soxhlet apparatus. Antioxidant (DPPH, FRAP, and TAC methods), antihemolytic (2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) induced hemolysis test), hypolipidemic (3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity inhibition test), and anti-inflammatory (protein denaturation inhibition) effects of extracts were carried out using in vitro methods. The results showed that the polyphenolic extracts of these two species revealed important amounts of phenolic compounds. The contents of flavonoids were significant in the two species, while the contents of tannins and anthocyanin were very low. T. atlanticus showed an important antioxidant activity and a considerable antihemolytic effect in AAPH-induced hemolysis test (IC50 = 0.29 mg/mL), while T. willdenowii showed an important anti-inflammatory activity in heat-induced protein denaturation test (IC50 = 1.61 mg/mL). Moreover, both extracts at a dose of 20 µg/mL showed an important in vitro hypolipidemic activity by inhibiting HMG-CoA reductase activity (T. willdenowii: 51.16 %; T. atlanticus: 62.83 %). In conclusion, T. willdenowii and T. atlanticus extracts have considerable antioxidant, antihemolytic, hypolipidemic, and anti-inflammatory effects. The richness of these species in polyphenols gives them a large specter of biological properties, making them a valuable source of natural bioactive compounds that could prevent or treat various diseases.

___

  • Afonso, A.F., Pereira, O.R., & Cardoso, S.M. (2020). Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-inflammatory and Antitumoral Properties. Antioxidants, 9(9), 814. https://doi.org/10.3390/antiox9090814
  • Atasoy, A.D., Yesilnacar, M.I., & Atasoy, A.F. (2019). Essential Element Contents of Turkish Black Tea. In A.M. Grumezescu & A.M. Holban (Eds.), Non-Alcoholic Beverages (pp. 63–72). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815270-6.00002-5
  • Bartolucci, F., & Domina, G. (2015). The genus Thymus (Lamiaceae) in Sicily. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 149(4), 710–719. https://doi.org/10.1080/11263504.2015.1057259
  • Benzie, I.F.F., & Strain, J.J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
  • Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M.R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135, 311–320. https://doi.org/10.1016/j.indcrop.2019.04.055
  • Boutaoui, N., Zaiter, L., Benayache, F., Benayache, S., Carradori, S., Cesa, S., Giusti, A.M., Campestre, C., Menghini, L., Innosa, D., & Locatelli, M. (2018). Qualitative and Quantitative Phytochemical Analysis of Different Extracts from Thymus algeriensis Aerial Parts. Molecules, 23(2), 2. https://doi.org/10.3390/molecules23020463
  • Chandra, S., Chatterjee, P., Dey, P., & Bhattacharya, S. (2012). Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific Journal of Tropical Biomedicine, 2(1), 178–180. https://doi.org/10.1016/S2221-1691(12)60154-3
  • Chatterjee, S. (2016). Oxidative Stress, Inflammation, and Disease. In: T. Dziubla & D.A. Butterfield (Eds) Oxidative Stress and Biomaterials, Academic Press, pp 35–58. https://doi.org/10.1016/B978-0-12-803269-5.00002-4
  • David Eckersall, P. (2008). Proteins, Proteomics, and the Dysproteinemias. In J.J. Kaneko, J.W. Harvey, & M.L. Bruss (Eds) Clinical Biochemistry of Domestic Animals (Sixth Edition), Academic Press, pp 117–155. https://doi.org/10.1016/B978-0-12-370491-7.00005-2
  • Dharmadeva, S., Galgamuwa, L.S., Prasadinie, C., & Kumarasinghe, N. (2018). In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu, 39(4), 239–242. https://doi.org/10.4103/ayu.AYU_27_18
  • El Yaagoubi, M., Mechqoq, H., El Hamdaoui, A., Jrv Mukku, V., El Mousadik, A., Msanda, F., & El Aouad, N. (2021). A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. Journal of Ethnopharmacology, 278, 114205. https://doi.org/10.1016/j.jep.2021.114205
  • Elbouny, H., Ouahzizi, B., Bakali, A., Sellam, K., & Alem, C. (2022). Phytochemical study and antioxidant activity of two Moroccan Lamiaceae species: Nepeta nepetella subsp. amethystina and Sideritis arborescens Salzm. ex Benth., Journal of Analytical Sciences and Applied Biotechnology, 4, 15–21. https://doi.org/10.48402/IMIST.PRSM/jasab-v3i1.29989
  • Elbouny, H., Ouahzizi, B., Bouhlali, E.D.T., Sellam, K., & Alem, C. (2022). Pharmacological, biological and phytochemical aspects of Thymus munbyanus Boiss. & Reut.: A review. Plant Science Today, 9(2), 399-404. https://doi.org/10.14719/pst.1494
  • Elisia, I., Hu, C., Popovich, D.G., & Kitts, D.D. (2007). Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chemistry, 101(3), 1052–1058. https://doi.org/10.1016/j.foodchem.2006.02.060
  • Gedikoğlu, A., Sökmen, M., & Çivit, A. (2019). Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Science & Nutrition, 7(5), 1704 1714. https://doi.org/10.1002/fsn3.1007
  • Heim, K.E., Tagliaferro, A.R., & Bobilya, D.J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
  • Heimler, D., Vignolini, P., Dini, M.G., Vincieri, F.F., & Romani, A. (2006). Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chemistry, 99(3), 3. https://doi.org/10.1016/j.foodchem.2005.07.057
  • Kandikattu, H.K., Rachitha, P., Krupashree, K., Jayashree, G.V., Abhishek, V., & Khanum, F. (2015). LC–ESI-MS/MS analysis of total oligomeric flavonoid fraction of Cyperus rotundus and its antioxidant, macromolecule damage protective and antihemolytic effects. Pathophysiology, 22(4), 165 173. https://doi.org/10.1016/j.pathophys.2015.07.001
  • Khouya, T., Ramchoun, M., Elbouny, H., Hmidani, A., & Alem, C. (2022). Loquat (Eriobotrya japonica (Thunb) Lindl.): Evaluation of nutritional value, polyphenol composition, antidiabetic effect, and toxicity of leaf aqueous extract. Journal of Ethnopharmacology, 296, 115473.
  • Kuete, V. (2017). Thymus vulgaris. In: V. Kuete (Ed) Medicinal Spices and Vegetables from Africa. Academic Press, pp 599–609. https://doi.org/10.1016/B978-0-12-809286-6.00028-5
  • Labiad, M.H., Hicham, H., Ghanimi, A., & Tabyaoui, M. (2017). Phytochemical screening and antioxidant activity of Moroccan Thymus satureioïdes extracts. Journal of Materials and Environmental Science, 8, 2132–2139.
  • Li, A.-N., Li, S., Zhang, Y.-J., Xu, X.-R., Chen, Y.-M., & Li, H.-B. (2014). Resources and Biological Activities of Natural Polyphenols. Nutrients, 6(12), 6020-6047. https://doi.org/10.3390/nu6126020
  • Li, J., Liu, X.-D., Shen, L., Zeng, W.-M., & Qiu, G.-Z. (2016). Natural plant polyphenols for alleviating oxidative damage in man: Current status and future perspectives. Tropical Journal of Pharmaceutical Research, 15, 1089. https://doi.org/10.4314/tjpr.v15i5.27
  • Lima, G.P.P., Vianello, F., Corrêa, C.R., Campos, R.A. da S., & Borguini, M.G. (2014). Polyphenols in fruits and vegetables and its effect on human health. Food and Nutrition Sciences, 1, 1065–1082. https://doi.org/10.4236/fns.2014.511117
  • Lunin, S.M., & Novoselova, E.G. (2010). Thymus hormones as prospective anti-inflammatory agents. Expert Opinion on Therapeutic Targets, 14(8), 775 786. https://doi.org/10.1517/14728222.2010.499127
  • Msaada, K., Tammar, S., Salem, N., Bachrouch, O., Sriti, J., Hammami, M., Selmi, S., Azaiez, S., Hadj-Brahim, A., Sane, K.A., Limam, F., & Marzouk, B. (2016). Chemical Composition and Antioxidant Activities of Tunisian Thymus capitatus L. Methanolic Extract. International Journal of Food Properties, 19(6), 1381 1390. https://doi.org/10.1080/10942912.2015.1082138
  • Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., & Nabavi, S.F. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry, 173, 339–347. https://doi.org/10.1016/j.foodchem.2014.10.042
  • Naqinezhad, A., Nabavi, S.M., Nabavi, S.F., & Ebrahimzadeh, M.A. (2012). Antioxidant and antihemolytic activities of flavonoid rich fractions of Artemisia tschernieviana Besser. European Review for Medical and Pharmacological Sciences, 16(3), 88–94.
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019
  • Ramchoun, M., Khouya, T., Alibrahim, E.A., Hmidani, A., Sellam, K., Amrani, S., Harnafi, H., Benlyas, M., Kasbi Chadli, F., Ouguerram, K., & Alem, C. (2020). Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet. Archives of Physiology and Biochemistry, 1(1), 1–8. https://doi.org/10.1080/13813455.2020.1854308
  • Ramchoun, M., Sellam, K., Harnafi, H., Alem, C., Benlyas, M., Khallouki, F., & Amrani, S. (2015). Investigation of antioxidant and antihemolytic properties of Thymus satureioides collected from Tafilalet Region, south-east of Morocco. Asian Pacific Journal of Tropical Biomedicine, 5(2), 93–100. https://doi.org/10.1016/S2221-1691(15)30151-9
  • Rauf, A., Khan, R., Khan, H., & Tokuda, H. (2015). Cytotoxic, antitumour-promoting and inhibition of protein denaturation effects of flavonoids, isolated from Potentilla evestita Th. Wolf. Natural Product Research, 29(18), 1775 1778. https://doi.org/10.1080/14786419.2014.999336
  • Rota, M.C., Herrera, A., Martínez, R.M., Sotomayor, J.A., & Jordán, M.J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19(7), 681 687. https://doi.org/10.1016/j.foodcont.2007.07.007
  • Ruiz-Ruiz, J.C., Matus-Basto, A.J., Acereto-Escoffié, P., & Segura-Campos, M.R. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424 1437. https://doi.org/10.1080/09540105.2017.1347148
  • Schieber, M., & Chandel, N.S. (2014). ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 24(10), 453–462. https://doi.org/10.1016/j.cub.2014.03.034
  • Shallangwa, G., Dallatu, Y., Stephen, A., & Shuabu, H. (2016). In-vitro anti-inflammatory evaluation of ethanol extracts of Moringa oleifera, Thymus vulgaris and their extract blend on protein denaturation. Trends in Science and Technology Journal, 1(2), 436–441.
  • Singleton, V.L., & Rossi, J. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Soorni, A., Borna, T., Alemardan, A., Chakrabarti, M., Hunt, A.G., & Bombarely, A. (2019). Transcriptome Landscape Variation in the Genus Thymus. Genes, 10(8), 8. https://doi.org/10.3390/genes10080620
  • Li, C., & Palmer-Keenan, D. (2019). The Impact of Nutrition and Statins on Cardiovascular Diseases. Journal of Nutrition Education and Behavior, 51(9), 1132-1133.
  • Taghouti, M., Martins-Gomes, C., Félix, L.M., Schäfer, J., Santos, J.A., Bunzel, M., Nunes, F.M., & Silva, A.M. (2020). Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chemistry, 331, 127362. https://doi.org/10.1016/j.foodchem.2020.127362
  • Takebayashi, J., Kaji, H., Ichiyama, K., Makino, K., Gohda, E., Yamamoto, I., & Tai, A. (2007). Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives. Free Radical Biology and Medicine, 43(8), 1156 1164. https://doi.org/10.1016/j.freeradbiomed.2007.07.002
  • Tasleem, F., & Imam, S. (2017). Evaluation of anti-inflammatory and other biological activities of flavonoid based cream formulation for topical application using in vitro model. International Journal of Pharmceutical Sciences and Research, 8, 4388–4395.
  • Tohidi, B., Rahimmalek, M., & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry, 220, 153 161. https://doi.org/10.1016/j.foodchem.2016.09.203
  • Ustuner, O., Anlas, C., Bakirel, T., Ustun-Alkan, F., Diren Sigirci, B., Ak, S., Akpulat, H.A., Donmez, C., & Koca-Caliskan, U. (2019). In Vitro Evaluation of Antioxidant, Anti-Inflammatory, Antimicrobial and Wound Healing Potential of Thymus Sipyleus Boiss. Subsp. Rosulans (Borbas) Jalas. Molecules, 24(18), E3353. https://doi.org/10.3390/molecules24183353
  • Ziaullah, & Rupasinghe, H.P.V. (2015). Application of NMR spectroscopy in plant polyphenols associated with human health. In: Applications of NMR spectroscopy. Bentham Science Publishers, pp 3-92. https://doi.org/10.1016/B978-1-60805-999-7.50001-X
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

Düzeltme: Antioxidant and antimicrobial activities of methanol extracts from Adonis paryadrica (Ranunculaceae) – a critically endangered endemic species growing in the Turkish flora

Mustafa CÜCE

In vitro investigations of biological activities of Thymus willdenowii and Thymus atlanticus polyphenol-rich extracts

Elbouny HAMZA, Ouahzizi BRAHİM, Sellam KHALİD, Alem CHAKİB

Pharmacological potential of fungal endophytes associated with the genus Ocimum L.

Karthıka M, Rasmi A R

Assessment of genetic diversity based on agro-morphological traits and ISSR molecular markers in einkorn wheat (Triticum monococcum ssp. monococcum) landrace populations from Turkey

Suliman ZOMMİTA, Gülgez Gökçe YILDIZ, Nusret ZENCİRCİ, Özlem ÖZBEK, Ömer Can ÜNÜVAR, Ercan Selçuk ÜNLÜ

A systematic review on Hammada scoparia medicinal plant: Phytochemicals, traditional uses and biological activities

Chaima BENİNE, Ali Boutlelis DJAHRA, Laiche AMMAR TOUHAMİ, Abdelkrim REBİAİ

Interactive effects of salicylic acid and jasmonic acid on secondary metabolite production in Echinacea purpurea

Fatemeh RASOLİ, Manoochehr GHOLİPOOR

Susceptibility of bacterial species isolated from mares to ozonated sunflower oil

Gabriel Souza DOS SANTOS, Arthur Azevedo PERPÉTUO, Marcus Vinícius DİAS SOUZA

Antioxidant activity, analgesic activity, and phytochemical analysis of Ammi majus (L.) extracts

Otman EL-GUOURRAMI, Soufiane DRIOUA, Mouna AMEGGOUZ, Najoua SALHI, Karima SAYAH, Gokhan ZENGİN, Ahmed ZAHIDI, Anass DOUKKALI, Hanane BENZEID

Biological activities of different plant species belonging to the Asteraceae family

Gülşen GÜÇLÜ, Merve İNANIR, Esra UÇAR, Nuraniye ERUYGUR, Mehmet ATAŞ, Tansu USKUTOĞLU, Belgin COŞGE ŞENKAL

Promising antioxidant activity of crude extract from Calliandra tweedii Benth

Kátia DOS SANTOS, Alice NAGAİ, Carmen PALACİOS, Bruno EVANGELİSTA, Carlos PRİANTE, Débora ZAMBAN, Claudia FURLAN