Assessment of genetic diversity based on agro-morphological traits and ISSR molecular markers in einkorn wheat (Triticum monococcum ssp. monococcum) landrace populations from Turkey

The aim of this study is to investigate genetic diversity in 48 einkorn (Triticum monococcum L. ssp. monococcum) landraces grown in agricultural areas of Bolu and Kastamonu. Therefore, variation in seven agro-morphological traits was investigated. Agro-morphological traits such as leaf weight (mg), coleoptile length (cm), root number (n), root length (cm), fresh root weight (mg), and dry root weight (mg) were examined by the coefficient of variation, ANOVA, and principal components analysis. The highest coefficient of variation (%) was observed in fresh root weight (FRW = 52.09%), while the lowest was in leaf weight (LW = 8.9%). Principal Component Analysis (PCA) was calculated as 76.93% variation in two main components. For molecular characterization, data obtained with iSSR primers were analyzed with the population genetics analysis program PopGene (ver. 1.32). According to PopGene results, the mean number of alleles, the mean number of effective alleles, and average genetic diversity values were calculated as na = 2, nea = 1.33, and h = 0.13, respectively. Among the agro-morphological traits, germination power, root number, and coleoptile length appeared to be reliable traits. The results show that the use of morphological characters alone for genetic diversity in populations is not sufficient to determine the difference between populations and their genetic structure.

Assessment of genetic diversity based on agro-morphological traits and ISSR molecular markers in einkorn wheat (Triticum monococcum ssp. monococcum) landrace populations from Turkey

The aim of this study is to investigate genetic diversity in 48 einkorn (Triticum monococcum L. ssp. monococcum) landraces grown in agricultural areas of Bolu and Kastamonu. Therefore, variation in seven agro-morphological traits was investigated. Agro-morphological traits such as leaf weight (mg), coleoptile length (cm), root number (n), root length (cm), fresh root weight (mg), and dry root weight (mg) were examined by the coefficient of variation, ANOVA, and principal components analysis. The highest coefficient of variation (%) was observed in fresh root weight (FRW = 52.09%), while the lowest was in leaf weight (LW = 8.9%). Principal Component Analysis (PCA) was calculated as 76.93% variation in two main components. For molecular characterization, data obtained with iSSR primers were analyzed with the population genetics analysis program PopGene (ver. 1.32). According to PopGene results, the mean number of alleles, the mean number of effective alleles, and average genetic diversity values were calculated as na = 2, nea = 1.33, and h = 0.13, respectively. Among the agro-morphological traits, germination power, root number, and coleoptile length appeared to be reliable traits. The results show that the use of morphological characters alone for genetic diversity in populations is not sufficient to determine the difference between populations and their genetic structure.

___

  • Abdel-Aal, E.-S.M., Hucl, P., Sosulski, F.W., & Bhirud, P.R. (1997). Kernel, Milling and Baking Properties of Spring-Type Spelt and Einkorn Wheats. Journal of Cereal Science, 26(3), 363–370. https://doi.org/10.1006/jcrs.1997.0139
  • Aslan, D., Ordu, B., Göre, M.E., Akin, B., & Zencirci, N. (2018). Germination Stage Water Scarcity in Bread and Einkorn Wheat. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 1–15. https://doi.org/10.21566/tarbitderg.436371
  • Bavec, F., & Bavec, M. (2006). Organic Production and Use of Alternative Crops. CRC Press. https://doi.org/10.1201/9781420017427
  • Butnaru, G., Sarac, I., Blidar, A., Holly, L., & Mar, I. (2003). Morpho-Agronomic variability of Triticum monococcum L. land races in the Timisoara area. In VIIth International Symposium Interdisciplinary Regional Research-ISIRR 2003 Hungary–Serbia & Montenegro–Romania, 359. http://annals.fih.upt.ro/pdf/ISIRR-2003-S04.pdf#page=65
  • Castagna, R., Borghi, B., Di Fonzo, N., Heun, M., & Salamini, F. (1995). Yield and related traits of einkorn (T. monococcum ssp. monococcum) in different environments. European Journal of Agronomy, 4(3), 371–378. https://doi.org/10.1016/s1161-0301(14)80038-5
  • Desheva, G.N., Kyosev, B., & Deshev, M. (2020). Assessment genetic diversity of einkorn genotypes (Triticum monococcum L.) by gliadin electrophoresis. Acta Agriculturae Slovenica, 116(2), 327. https://doi.org/10.14720/aas.2020.116.2.1430
  • Empilli, S., Castagna, R., & Brandolini, A. (2000). Morpho-agronomic variability of the diploid wheat Triticum monococcum L. Plant Genetic Resources Newsletter, 36–40. https://books.google.com.tr/books?hl=en&lr=&id= EugPlBNki4C&oi=fnd&pg=PA36&dq=Empilli,+S.,+Castagna,+R.,+%26+Brandolini,+A.+(2000).+Morpho agronomic+variability+of+the+diploid+wheat+Triticum+monococcum+L.+Plant+Genetic+Resources+Newsletter,+36%E2%80%9340.&ots=hWbD1reYGO&sig=V_kafSG9wZI8iZFZ56vtW636rK0&redir_esc=y#v=onepage&q&f=false
  • Eslami Farouji, A., Khodayari, H., Saeidi, H., & Rahiminejad, M.R. (2015). Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia, 70(1), 52–60. https://doi.org/10.1515/biolog-2015-0002
  • Fritsch, R., Hammer, K., & Szabo, A.T. (1996). [Ethnobiodiversity: human diversity and plant genetic diversity in the evolution of crop plants. Part 1].[English); De (German]. Schriftenreihe Des Information SzentrumsfuerGenetischeRessourcen (Germany), 4.
  • Goto, F., Tsutsumi, T., & Ogawa, K. (2011). The Japanese version of the Dizziness Handicap Inventory as an index of treatment success: Exploratory factor analysis. Acta Oto-Laryngologica, 131(8), 817–825. https://doi.org/10.3109/00016489.2011.565423
  • Guzy, M.R., Ehdaie, B., & Waines, J.G. (1989). Yield and Its Components in Diploid, Tetraploid and Hexaploid Wheats in Diverse Environments. Annals of Botany, 64(6), 635–642. https://doi.org/10.1093/oxfordjournals.aob.a087888
  • Insee (Website) (2016). Coefficient of variation / CV - Definition. https://www.insee.fr/en/metadonnees/definition/c1366. Access date 02.03.2022
  • Jackson, D.A. (1993). Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches. Ecology, 74(8), 2204 2214. https://doi.org/10.2307/1939574
  • Karagöz, A., & Zencirci, N. (2005). Variation in Wheat (Triticum spp.) Landraces from Different Altitudes of Three Regions of Turkey. Genetic Resources and Crop Evolution, 52(6), 775–785. https://doi.org/10.1007/s10722-004-3556-3
  • Keskin, S., Özbek, Ö., Eser, V., & Göçmen, B. (2015). Polymorphism in seed endosperm proteins (gliadins and glutenins) of Turkish cultivated einkorn wheat [Triticum monococcum ssp.monococcum] landraces. Cereal Research Communications, 43(1), 108–122. https://doi.org/10.1556/crc.2014.0028
  • Kidwell, K.K., & Osborn, T.C. (1992). Simple plant DNA isolation procedures. In Plant Genomes: Methods for Genetic and Physical Mapping (pp. 1–13). Springer Netherlands. https://doi.org/10.1007/978-94-011-2442-3_1
  • Le Corre, V., & Bernard, M. (1995). Assessment of the type and degree of restriction fragment length polymorphism (RFLP) in diploid species of the genus Triticum. Theoretical and Applied Genetics, 90(7–8), 1063–1067. https://doi.org/10.1007/bf00222922
  • Løje, H., Møller, B., Laustsen, A. M., & Hansen, Å. (2003). Chemical Composition, Functional Properties and Sensory Profiling of Einkorn (Triticum monococcum L.). Journal of Cereal Science, 37(2), 231–240. https://doi.org/10.1006/jcrs.2002.0498
  • Malaki, M., Naghavi, M.R., Alizadeh, H., Potki, P., Kazemi, M., Pirseyedi, S.M., ... & Fakhr, T. (2006). Study of genetic variation in wild diploid wheat (Triticum boeoticum) from Iran using AFLP markers. IJB-Iranian Journal of Biotechnology; 4(4), 269-274
  • Mizumoto, K., Hirosawa, S., Nakamura, C., & Takumi, S. (2002). Nuclear and chloroplast genome genetic diversity in the wild einkorn wheat, Triticum urartu, revealed by AFLP and SSLP analyses. Hereditas, 137(3), 208 214. https://doi.org/10.1034/j.1601 5223.2002.01654.x
  • Naghavi, M.R., Mardi, M., Pirseyedi, S.M., Kazemi, M., Potki, P., & Ghaffari, M.R. (2007). Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genetic Resources and Crop Evolution, 54(2), 237–240. https://doi.org/10.1007/s10722-006-9143-z
  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70(12), 3321–3323. https://doi.org/10.1073/pnas.70.12.3321
  • O’Grady, K.E. (1982). Measures of explained variance: Cautions and limitations. Psychological Bulletin, 92(3), 766–777. https://doi.org/10.1037/0033-2909.92.3.766
  • Özbek, Ö., Göçmen, B., Keskin Ş., S., Eser, V., & Arslan, O. (2012). High-molecular-weight glutenin subunit variation in Turkish emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] landraces. Plant Systematics and Evolution, 298(9), 1795–1804. https://doi.org/10.1007/s00606-012-0680-y
  • Özbek, Ö., Göçmen, B., Keskin Ş., S., Eser, V., & Arslan, O. (2013). Genetic characterization of Turkish cultivated emmer wheat [Triticum turgidum L. ssp. Dicoccon (Schrank) Thell.] landraces based on isoenzyme analysis. Cereal Research Communications, 41(2), 304–315. https://doi.org/10.1556/crc.2013.0001
  • Özbek, Ö., Taşkın, B.G., Şan, S.K., Eser, V., & Arslan, O. (2011). Gliadin polymorphism in Turkish cultivated emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] landraces. Plant Systematics and Evolution, 296(12), 121 135. https://doi.org/10.1007/s00606-011-0481-8
  • Ozbek, Ö., Zencirci, N. (2021). Characterization of genetic diversity in cultivated einkorn wheat [Triticum monococcum L. ssp. monococcum] landrace populations from Turkey as revealed by ISSR. Russian Journal of Genetics, 57(4).
  • Özberk, İ., Atay, S., Altay, F., Cabi, E., Özkan, H., & Atlı, A. (2016). Türkiye’nin buğday atlası. İstanbul: WWF-Türkiye. 5-84.
  • Sharma, R.K. (1984). Book reviews : Barbara Harriss, State and Market: State Intervention in Agricultural Exchange in a Dry Region of Tamil Nadu, South India, New Delhi, Concept Publishing Company, 1984, 375 pp. The Indian Economic & Social History Review, 21(4), 521–522. https://doi.org/10.1177/001946468402100409
  • Troccoli, A., & Codianni, P. (2005). Appropriate seeding rate for einkorn, emmer, and spelt grown under rainfed condition in southern Italy. European Journal of Agronomy, 22(3), 293–300. https://doi.org/10.1016/j.eja.2004.04.003
  • Ünal, S. (2002). Importance of wheat quality and methods in wheat quality determination. Hububat Ürünleri Teknolojisi Kongre ve Sergisi, 25–37.
  • Ünlü, E.S., Bataw, S., Aslan Şen, D., Şahin, Y., & Zencirci, N. (2018). Identification of conserved miRNA molecules in einkorn wheat (Triticum monococcum subsp. monococcum) by using small RNA sequencing analysis. Turkish Journal of Biology = Turk Biyoloji Dergisi, 42(6), 527–536. https://doi.org/10.3906/biy-1802-3
  • Yeh, F.C., Yang, R.C., Boyle, T., Ye, Z.H., Mao, J.X. (1997). POPGENE (version 1.32): The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Canada, 10, 295-301.
  • Zencirci, N., Yılmaz, H., Garaybayova, N., Karagöz, A., Kilian, B., Özkan, H., Hammer, K., & Knüpffer, H. (2018). Mirza (Hacızade) Gökgöl (1897–1981): the great explorer of wheat genetic resources in Turkey. Genetic Resources and Crop Evolution, 65(3), 693–711. https://doi.org/10.1007/s10722-018-0606-9
  • Zencirci, N., Ulukan, H., Bülent, O.R.D.U., Aslan, D., Mutlu, H.T., & Örgeç, M. (2019). Salt, cold, and drought stress on einkorn and bread wheat during germination. International Journal of Secondary Metabolite, 6(2), 113-128.
  • Zeven, A.C. (1999). The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: A review. Euphytica, 110, 181–191.
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

In vitro investigations of biological activities of Thymus willdenowii and Thymus atlanticus polyphenol-rich extracts

Elbouny HAMZA, Ouahzizi BRAHİM, Sellam KHALİD, Alem CHAKİB

Susceptibility of bacterial species isolated from mares to ozonated sunflower oil

Gabriel Souza DOS SANTOS, Arthur Azevedo PERPÉTUO, Marcus Vinícius DİAS SOUZA

Analysis of phytochemical composition and biological activities of Helichrysum pallasii (Sprengel) ledeb leaves

Nejmi IŞIK, Muzaffer MÜKEMRE, Rabia Sena TÜRKER, Gokhan ZENGİN, Abdullah DALAR

Promising antioxidant activity of crude extract from Calliandra tweedii Benth

Kátia DOS SANTOS, Alice NAGAİ, Carmen PALACİOS, Bruno EVANGELİSTA, Carlos PRİANTE, Débora ZAMBAN, Claudia FURLAN

A systematic review on Hammada scoparia medicinal plant: Phytochemicals, traditional uses and biological activities

Chaima BENİNE, Ali Boutlelis DJAHRA, Laiche AMMAR TOUHAMİ, Abdelkrim REBİAİ

Antioxidant activity, analgesic activity, and phytochemical analysis of Ammi majus (L.) extracts

Otman EL-GUOURRAMI, Soufiane DRIOUA, Mouna AMEGGOUZ, Najoua SALHI, Karima SAYAH, Gokhan ZENGİN, Ahmed ZAHIDI, Anass DOUKKALI, Hanane BENZEID

Assessment of genetic diversity based on agro-morphological traits and ISSR molecular markers in einkorn wheat (Triticum monococcum ssp. monococcum) landrace populations from Turkey

Suliman ZOMMİTA, Gülgez Gökçe YILDIZ, Nusret ZENCİRCİ, Özlem ÖZBEK, Ömer Can ÜNÜVAR, Ercan Selçuk ÜNLÜ

Interactive effects of salicylic acid and jasmonic acid on secondary metabolite production in Echinacea purpurea

Fatemeh RASOLİ, Manoochehr GHOLİPOOR

Oxidative stress induced by fluorine in Xanthoria parietina (L.) Th. Fr.

Ouahiba BENHAMADA, Nabila BENHAMADA, Essaid LEGHOUCHİ

Optimization of supercritical fluid CO2 extraction of Opoponax essential oil (C. erythraea)

Fatih DURAK, Aydın AYDIN, Münevver SÖKMEN