Antiradical and Antibacterial Activity of Essential Oils from the Lamiaceae Family Plants in Connection with their Composition and Optical Activity of Components
Antiradical activity of essential oils of korean mint (Agastache rugosa (Fisch. et Mey)), blue giant hyssop (Agastache foeniculum (Pursh) Kuntze), hyssop (Hyssopus officinalis L.), lavander (Lavandula angustifolia L.), peppermint (Mentha piperita L.), lemon mint (Mentha piperita var. citrata (Ehrh.) Briq), monarda (Monarda fistulosa L.), oregano (Origanum vulgare L.), common sage (Salvia officinalis L.), clary (Salvia sclarea L.), and winter savory (Satureja montana L.) cultivated in the Central Botanical Garden of NAS of Belarus was investigated in the reaction with the cation-radicals of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+·). The most pronounced antiradical activity was observed for the essential oils with a high content of phenolic compounds: winter savory and monarda. Antiradical properties of the essential oils and individual phenolic and terpene compounds (eugenol, carvacrol, thymol, citral, (+)-pulegone) in the reaction with ABTS+· significantly differ in aqueous solutions and ethanol-water mixtures.
Antiradical and Antibacterial Activity of Essential Oils from the Lamiaceae Family Plants in Connection with their Composition and Optical Activity of Components
Antiradical activity of essential oils of korean mint (Agastache rugosa (Fisch. et Mey)), blue giant hyssop (Agastache foeniculum (Pursh) Kuntze), hyssop (Hyssopus officinalis L.), lavander (Lavandula angustifolia L.), peppermint (Mentha piperita L.), lemon mint (Mentha piperita var. citrata (Ehrh.) Briq), monarda (Monarda fistulosa L.), oregano (Origanum vulgare L.), common sage (Salvia officinalis L.), clary (Salvia sclarea L.), and winter savory (Satureja montana L.) cultivated in the Central Botanical Garden of NAS of Belarus was investigated in the reaction with the cation-radicals of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+·). The most pronounced antiradical activity was observed for the essential oils with a high content of phenolic compounds: winter savory and monarda. Antiradical properties of the essential oils and individual phenolic and terpene compounds (eugenol, carvacrol, thymol, citral, (+)-pulegone) in the reaction with ABTS+· significantly differ in aqueous solutions and ethanol-water mixtures. Нigh antibacterial activity of selected components of essential oils from the Lamiaceae plants, carvacrol, citral, and linalool, towards test organisms Sarcina lutea, Esherichia coli, Staphylococcus saprophyticus, Pseudomonas fluorescens, Bacillus megaterium, Pseudomonas putida was shown. The antibacterial activity of enantiomers of pinene and limonene was determined. The dextrorotary isomer of α-pinene possesses a significantly higher level of activity as compared with the levorotary one. S-(-)-limonene proves itself as a more active antimicrobial component towards Sarcina lutea and Staphylococcus saprophyticus than R-(+)-limonene. Both enantiomers show comparable activity towards Esherichia coli. Due to the high antibacterial activity the essential oils from Satureja montana and Monarda fistulosa can be considered as effective antibacterial agents.
___
- Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils-A review. Food Chem. Toxicol., 46(2), 446–475.
- Perry, N.B., Anderson, R.E., Brennan, N. J., Douglas, M.H., Heaney, A.J., McGimpsey, J.A., & Smallfield, B.M. (1999). Essential oils from Dalmatian Sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J. Agric. Food Chem., 47(5), 2048–2054.
- De Sousa, D.D., De Farias, F.F., & De Almeida, R.N. (2007). Influence of the chirality of (R)-(−)- and (S)-(+)-carvone in the central nervous system: A comparative study. Chirality, 19(4), 264-268.
- Van Vuuren, S. F., & Viljoen, A. M. (2007). Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Frag. J., 22(6), 540–544.
- Choi, H–S., Song, H.S., Ukeda, H., & Sawamura, M. (2000). Radical–scavenging activities of citrus essential oils and their components: detection using 1.1– diphenyl–2–picrylhydrazyl. J. Agric. Food Chem., 48(9), 4156–4161.
- Mantlel, D., Anderton, J.G., Falkous, G., Barnes, M., Jones, P., & Perry, E.K. (1998). Соmparison of methods for determination of total antioxidant status: application to analysis of medicinal plant essential oils. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 121(4), 385–391.
- Soković, M., Glamočlija, J., Marin, P.D., Brkić, D., & van Griensven, L.J.L.D. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15(11), 7532-7546.
- Simões, M., Bennett, R. N., & Rosa, E.A.S. (2009). Understanding antimicrobial activities of phytochemicals against multidrugresistant bacteria and biofilms. Nat. Prod. Rep., 26(6), 746-757.
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A, Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med., 26(9-10), 1231–1237.
- Riedl, K.M., & Hagerman, A.E. (2001). Tannin–protein complexes as radical scavengers and radical sinks. J. Agric. Food Chem., 49(10), 4917–4923.
- Lambert, R.J., Skandamis, P.N., Coote, P.J., & Nychas, G.J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 91(3), 453-462.
- Denisov E.T., & Azatyan V.V. (2000). Inhibition of chain reactions. Gordon and Breach, London, 337 p.
- Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (2016). Counting on natural products for drug design. Nat. Chem., 8(6), 531-541.
- Shutava, H.G., Karpinskaya, E.V., Sergeenko, N.V., Paromchik, I.I., & Makhnach, S.A. (2005). Characteristics of secondary metabolites of phenolic type in ocimum (Ocimum basilicum L.). Proc. of the Nat. Academy of Sciences of Belarus, Ser. of Biological Sci., 3, 10–13.
- Trombetta, D., Castelli, F., Sarpietro, M., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 49(6), 2474-2478.
- Gallucci, M.N., Oliva, M., Casero, C., Dambolena, J., Luna, A., Zygadlo, J., & Demo, M. (2009). Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Frag. J., 24(6), 348-354.
- Knobloch, K., Weigand, H., Weis, N., Schwarm, H.M., & Vigenschow, H. (1986). Action of terpenoids on energy metabolism. In: Brunke, E.J., editor. Progress in Essential Oil Research. Walter de Gruyter, Berlin, Germany.
- Brehm-Stecher, B.F., & Johnson, E.A. (2003). Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone. Antimicrob. Agents Chemother., 47(10), 3357-3360.
- Aggarwal, K. K., Khanuja, S.P.S., Ahmad, A., Kumar, T.R.S., Gupta, V.K., &Kumar, S. (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr. J., 17(1), 59–63.
- Da Silva, A.C.R., Lopes, P.M., de Azevedo, M.M.B., Costa, D.C.M., Alviano, C.S., & Alviano, D.S. (2012). Biological activities of α-pinene and β-pinene enantiomers. Molecules, 17 (6), 6305–6316.