Sucuk Örneklerinin Ohmik Pişirilmesi Sırasında Elektrik İletkenlik Değerinin ve Pişirme Homojenliğinin İncelenmesi
Sucuk, Türk toplumu için önemli bir geleneksel et ürünüdür ve kahvaltıda, ızgarada, günlük yemeklerde ve tostta kullanılmaktadır. Sucuk örnekleri, sekiz farklı voltaj gradyanı kullanılarak ohmik ısıtma ile 80 °C'ye kadar ısıtılarak pişirilmiştir. Ohmik pişirme sırasında voltajın artması nedeniyle pişirme işleminin süresi kısalmıştır. Ayrıca, ohmik pişirme sırasında sıcaklık arttıkça elektriksel iletkenlik değerinin arttığı ve elektrik iletkenlik değerinin 0.51-3.38 S m-1 arasında değiştiği tespit edilmiştir. Ohmik pişirme işlemi sonunda numunelerin sıcaklık homojenliği termal kamera yardımı ile incelenmiş ve düşük voltaj gradyanlarında homojen pişirme sağlanamadığı tespit edilmiştir. Sonuç olarak sucuk örneklerinin ohmik pişirme ile pişirilebileceği ve yüksek voltaj gradyanında homojen pişirme sağlanabileceği belirlenmiştir.
Investigation of Electrical Conductivity Value and Cooking Homogeneity During Ohmic Cooking of Turkish Sausage
Turkish Sausage (Sucuk) is an important traditional meat product for Turkish society and is used in breakfast, grill, daily meals, and toast. Sucuk samples were cooked by heating up to 80 °C with ohmic heating using eight different voltage gradients. The cooking process has shortened due to the increase in the voltage during ohmic cooking. It was determined that the electrical conductivity value increased as the temperature increased during ohmic cooking, and the electrical conductivity value varied between 0.51-3.38 S m-1. At the end of the ohmic cooking process, the temperature homogeneity of the samples was examined with the help of a thermal camera and it was determined that homogeneous cooking could not be provided in low voltage gradients. As a result, it was determined that the sucuk sample could be cooked with ohmic cooking and that homogeneous cooking in a high voltage gradient can be provided.
___
- Referans1 Aksu, M. I., Kaya, M. 2004. Effect of usage Urtica dioica L. on microbiological properties of sucuk, a Turkish dry-fermented sausage. Food Control, 15(8):, 591–595. https://doi.org/10.1016/j.foodcont.2003.09.006
- Referans 2. Bozkurt, H., Icier, F. 2010a. Electrical conductivity changes of minced beef-fat blends during ohmic cooking. Journal of Food Engineering, 96(1):, 86–92. https://doi.org/10.1016/j.jfoodeng.2009.06.048
- Referans 3. Bozkurt, H., Icier, F. 2010b. Exergetic performance analysis of ohmic cooking process. Journal of Food Engineering, 100(4):, 688–695. https://doi.org/10.1016/j.jfoodeng.2010.05.020
- Referans 4. Bozkurt, H., Icier, F. 2010c. Ohmic cooking of ground beef: Effects on quality. Journal of Food Engineering, 96(4):, 481–490. https://doi.org/10.1016/j.jfoodeng.2009.08.030
- Referans 5. Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., Vicente, A. A. 2004. Ohmic heating of strawberry products: Electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies, 5(1):, 27–36. https://doi.org/10.1016/j.ifset.2003.11.001
- Referans 6. Çelebi, C., İçier, F. 2014. Ohmic thawing of frozen ground meat. Bulgarian Chemical Communications, 46(Special issue B):, 121–125.
- Referans 7. Cevik, M., Icier, F. 2018. Effects of voltage gradient and fat content on changes of electrical conductivity of frozen minced beef meat during ohmic thawing. Journal of Food Process Engineering, 41(4):, 1–13. https://doi.org/10.1111/jfpe.12675
- Referans 8. Cho, W. Il, Yi, J. Y., Chung, M. S. 2016. Pasteurization of fermented red pepper paste by ohmic heating. Innovative Food Science and Emerging Technologies, 34:, 180–186. https://doi.org/10.1016/j.ifset.2016.01.015
- Referans 9. Cokgezme, O. F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F. 2017. Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207:. https://doi.org/10.1016/j.jfoodeng.2017.03.015
- Referans 10. Gavahian, M., Farahnaky, A., Sastry, S. 2016. Ohmic-assisted hydrodistillation: A novel method for ethanol distillation. Food and Bioproducts Processing, 98:, 44–49. https://doi.org/10.1016/j.fbp.2015.11.003
- Referans 11. Halden, K., De Alwis, A. A. P., Fryer, P. J. 2007. Changes in the electrical conductivity of foods during ohmic heating. International Journal of Food Science & Technology, 25(1):, 9–25. https://doi.org/10.1111/j.1365-2621.1990.tb01055.x
- Referans 12. İcier, F. 2010. Ohmic blanching effects on drying of vegetable byproduct. Journal of Food Process Engineering, 33(4):, 661–683. https://doi.org/10.1111/j.1745-4530.2008.00295.x
- Referans 13. İçier, F. 2003. The Experimental Investigation and Mathematical Modeling of Ohmic Heating of Foods., Ege University.
- Referans 14. Icier, F., Cokgezme, O. F., Sabanci, S. 2017. Alternative Thawing Methods for the Blanched/Non-Blanched Potato Cubes: Microwave, Ohmic, and Carbon Fiber Plate Assisted Cabin Thawing. Journal of Food Process Engineering, 40(2):. https://doi.org/10.1111/jfpe.12403
- Referans 15. İcier, F., Sengun, I. Y., Yildiz Turp, G., Arserim, E. H. 2014. Effects of process variables on some quality properties of meatballs semi-cooked in a continuous type ohmic cooking system. Meat Science, 96(3):, 1345–1354. https://doi.org/10.1016/j.meatsci.2013.11.013
- Referans 16. İçier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O. 2017. Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science and Emerging Technologies, 39:, 241–246. https://doi.org/10.1016/j.ifset.2016.12.014
- Referans 17. Özkan, N., Ho, I., Farid, M. 2004. Combined ohmic and plate heating of hamburger patties: Quality of cooked patties. Journal of Food Engineering, 63(2):, 141–145. https://doi.org/10.1016/S0260-8774(03)00292-9
- Referans 18. Palaniappan, S., Sastry, S. K. 1991. Electrical Conductivities of Selected Solid Foods During Ohmic Heating. Journal of Food Process Engineering, 14(3):, 221–236. https://doi.org/10.1111/j.1745-4530.1991.tb00093.x
- Referans 19. Sarang, S., Sastry, S. K., Knipe, L. 2008. Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87(3):, 351–356. https://doi.org/10.1016/J.JFOODENG.2007.12.012
- Referans 21. Yildiz-Turp, G., Sengun, I. Y., Kendirci, P., Icier, F. 2013, March 1. Effect of ohmic treatment on quality characteristic of meat: A review. Meat Science, Elsevier: , 441–448. https://doi.org/10.1016/j.meatsci.2012.10.013
- Referans 22. YIldIz, H., Icier, F., Eroglu, S., Dagci, G. 2016. Effects of electrical pretreatment conditions on osmotic dehydration of apple slices: Experimental investigation and simulation. Innovative Food Science and Emerging Technologies, 35:, 149–159. https://doi.org/10.1016/j.ifset.2016.05.001
- Referans 23. Yildiz Turp, G., Icier, F., Kor, G. 2016. Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball. Meat Science, 114:, 46–53. https://doi.org/10.1016/j.meatsci.2015.12.006
- Referans 24. Zell, M., Lyng, J. G., Cronin, D. A., Morgan, D. J. 2009a. Ohmic cooking of whole beef muscle - Optimisation of meat preparation. Meat Science, 81(4):, 693–698. https://doi.org/10.1016/j.meatsci.2008.11.012
- Referans 25. Zell, M., Lyng, J. G., Cronin, D. A., Morgan, D. J. 2009b. Ohmic heating of meats: Electrical conductivities of whole meats and processed meat ingredients. Meat Science, 83(3):, 563–570. https://doi.org/10.1016/j.meatsci.2009.07.005