Akış Enjeksiyon Analiz Yönteminde Dedektör Olarak Potansiyometrik Sensör Kullanarak Çevre Numunelerinde Kalsiyum İyonu Tayini

Bu çalışmada, su numunelerindeki kalsiyum derişiminin belirlenmesinde kullanılmak üzere ticari olarak satın alınan iyonofor madde ile Ca2+-seçici mikro potansiyometrik PVC-membran elektrot geliştirildi. Elektrotun potansiyometrik performans karakteristikleri belirlendi ve çevresel analizlere uygunluğu araştırıldı. Hazırlanan Ca2+-seçici elektrot ile alınan ölçümlerde ana iyon çözeltisine karşı her 10 katlık kalsiyum iyonu konsantrasyonu değişimi için ortalama 23,5 mV’luk bir potansiyel farkı gözlendi. Elektrotun, 1×10-1-1×10-5 mol L-1 derişim aralığında ana iyon çözeltisine karşı doğrusal davranış sergilediği, alkali ve toprak alkali metal iyonlarının yanında ana iyona karşı oldukça seçici olduğu belirlendi. Laboratuvarda mikro ölü hacme sahip akış hücreleri hazırlandı ve akış enjeksiyon analizi (AEA) sisteminde hareketli faz olarak 5×10-5 M CaSO4 ve MgSO4; 1×10-6 M NaCl, KNO3, LiNO3 ve NH4Cl çözelti karışımı kullanılmış ve akış hızı: 1,0 mL dk-1, enjeksiyon hacmi ise 20 μL olarak belirlenmiştir. Geliştirilen bu elektrotların AEA sisteminde dedektör olarak kullanılması ile çevresel su numunelerinde kalsiyum iyonu tayini gerçekleştirildi. Ayrıca, su numunelerindeki kalsiyum tayini standart ekleme yöntemi ile de yapıldı ve tüm ölçümler potansiyometrik sonuçlarla karşılaştırmalı olarak verildi. Elde edilen sonuçlar, geliştirilen Ca2+-seçici mikro potansiyometrik PVC-membran elektrotun çevre numunelerindeki sularda kalsiyum iyonunun rutin tayininde etkin bir şekilde kullanılabileceğini göstermektedir.

Determination of Calcium Ion in Environmental Samples Using a Potentiometric Sensor as a Detector in Flow Injection Analysis Method

In this study, Ca2+-selective potentiometric PVC-membrane electrode was developed with the commercially purchased ionophore substance to be used to determine calcium concentration in water samples. The potentiometric performance characteristics of the electrode were determined and their suitability for environmental analysis was investigated The measurements taken with the Ca2+-selective electrode indicated an average potential change of 23,5 mV per decade against the main ion concentrations. The electrode showed linear behavior against the main ion solution in the concentration range between 1×10-1-1×10-5 mol L-1, and it was found to be highly selective against the main ion besides the alkali and alkaline earth metal ions. Micro dead volume flow cells were prepared in the laboratory and the calcium determination was made in environmental water samples by using the home-made electrode as a detector in the flow injection analysis (FIA) system. In the flow-injection analysis system (FIA), 5×10-5 M CaSO4 ve MgSO4; 1×10-6 M NaCl, KNO3, LiNO3 ve NH4Cl solution mixture was used as the mobile phase. In this system, the flow-rate was set to 1,0 mL min-1 and injection volume 20 μL. In addition, calcium determination in water samples was performed by standard addition method and all measurements were compared with potentiometric results. The results show that the Ca2+-selective micro-potentiometric PVC-membrane electrode can effectively be used for routine determination of calcium ion in water in environmental samples.

___

  • Abbas, M.N., Magar, H.S., 2018. Highly sensitive and selective solid-contact calcium sensor based on Schiff base of benzil with 3-aminosalycilic acid covalently attached to polyacrylic acid amide for health care. Journal of Solid State Electrochemistry, 22:181–192.
  • Abramova, N., Moral-Vico, J., Soley, J., Ocana, C., Bratov, A., 2016. Solid contact ion sensor with conducting polymer layer copolymerized with the ion-selective membrane for determination of calcium in blood serum. Analytica Chimica Acta, 943:50–57.
  • Ahmad, R., Tripathy, N., Ahn, M-S., Yoo, J-Y., Hahn, Y-B., 2018. Preparation of a highly conductive seed layer for calcium sensor fabrication with enhanced sensing performance. ACS Sensors, 3:772−778
  • Alizadeh, T., Shamkhali, A.N., Hanifehpou, Y., Joo, S.W., 2016. A Ca2+ selective membrane electrode based on calcium-imprinted polymeric nanoparticles. New Journal of Chemistry, 40:8479–8487.
  • Amini, M.K., Ghaedi, M., Rafi, A., Habibi, M.H., Zohory, M.M., 2003. Iodide selective electrodes based on bis(2-mercaptobenzothiazolato) mercury(II) and bis(4-chlorothiophenolato) mercury(II) carriers. Sensors, 3(11):509–523.
  • Bogdanova, A., Makhro, A., Wang, J., Lipp, P., Kaestner, L., 2013. Calcium in red blood cells-a perilous balance. International Journal of Molecular Sciences, 14(5):9848–9872.
  • Cardwell, T.J., Cattrall, R.W., Hauser, P.C., Hamilton, I.C., 1988. A multi-ion sensor cell and dataacquisition system for flow injection analysis. Analytica Chimica Acta, 214:359–366.
  • Cartoni, G.P., Coccioli, F., 1986. Characterization of mineral waters by high-performance liquid chromatography. Journal of Chromatography A, 360:225−230.
  • de Jesus, A., Zmozinski, A.V., Barbara, J.A., Vale, M.G.R., Silva, M.M., 2010. Determination of calcium and magnesium in biodisel by flame atomic absorption spectrometryusing microemulsions as sample preparation. Energy Fuels, 24:2109–2112.
  • Deng, B., Zhu, P., Wang, Y., Feng, J., Li, X., Xu, X., Lu, H., Xu, Q., 2008. Determination of free calcium and calcium-containing species in human plasma by capillary electrophoresis-inductively coupled plasma optical emission spectrometry. Analytical Chemistry, 80:5721–5726.
  • Gallardo, J.S., Alegret M.A.D., Roman, R., Munoz, P.R., Hernandez, L., Leija, L., del Valle M., 2003. Determination of ammonium ion employing an electronic tongue based on potentiometric sensors. Analytical Letters, 36(14):2893–2908.
  • Gismera, M.J., Arias, S., Sevilla, M.T., Procopio, J.R., 2009. Simultaneous quantification of heavy metals using a solid state potentiometric sensor array. Electroanalysis, 21:979–987.
  • Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O., del Valle, M., 2008. Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. Journal of Agricultural and Food Chemistry, 56:1810–1817.
  • Hans, B.F., 2003. Analysis of water in food by near infrared spectroscopy. Food Chemistry, 82: 107−115.
  • Hassan, S.S., Sayour, H.E., Al-Mehrezi, S.S., 2007. A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Analytica Chimica Acta, 581:13–18.
  • Hernandez, R., Riu, J., Rius, F.X., 2010. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes. Analyst, 135:1979–1985.
  • Ismail, A.H., Schäfer, C., Heiss, A., Walter, M., Jahnen-Dechent, W., Leonhardt, S., 2011. An electrochemical ımpedance spectroscopy (EIS) assay measuring the calcification ınhibition capacity in biological fluids. Biosensors and Bioelectronics, 26: 4702−4707.
  • IUPAC, 1994. Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for nomen-clature of Ion-Selective electrodes, Pure and Applied Chemistry, 66:2527–2536.
  • Johns, V.K., Patel, P.K., Hassett, S., Calvo-Marzal, P., Qin, Y., Chumbimuni-Rius, A., Callao, M., 2001. Application of time series models to the monitoring of a sensor array analytical system. Trends in Analytical Chemistry, 20:168–177.
  • Lin, M.J., Lewis, M.J., Grandison, A.S., 2006. Measurement of ionic calcium in milk. International Journal of Dairy Technology, 59(3):192–199.
  • Rius, A., Callao, M., 2001. Application of time series models to the monitoring of a sensor array analytical system, Trends in Analytical Chemistry, 20:168-177.
  • Ruzicka, J., 1992. The second coming of flow-injection analysis. Analytica Chimica Acta, 261(2):3–10.
  • Shamsipur, M., Mizani, F., Mousavi, M.F., Alizadeh, N., Alizadeh, K., Eshghi, H. Karami, H., 2007. A novel flow injection potentiometric graphite coated ionselective electrode for the low level determination of uranyl ion. Analytica Chimica Acta, 589:22–32.
  • Shiddiky, M.J.A., Torriero, A.A.J., 2011. Application of ionic liquids in electrochemical sensing systems. Biosensors and Bioelectronics, 26:1775−1787.
  • Silanikove, N., Shapiro, F., Shamay, A., 2003. Use of an ion-selective electrode to determine free Ca ion concentration in the milk of various mammals. Journal of Dairy Research, 70(2):241–243.
  • Terrab, A., Hernanz, D., Heredia, F.J., 2004. Inductively coupled plasma optical emission spectrometric determination of minerals in thyme honeys and their contributionto geographical discrimination. Journal of Agricultural and Food Chemistry, 52:3441–3445.
  • Torres, K.Y., 2014. Visible light activated ion sensing using a photoacid polymer for calcium detection. Analytical Chemistry, 86:6184−6187.
  • Tsioulpas, A., Lewis, M.J., Grandison, A.S., 2007. Effect of minerals on casein micelle stability of cows’ milk. Journal of Dairy Research, 74(2):167–173.
  • Zhang, Q., Prabhu, A., San, A., Al-Sharab, J.F., Levon, K., 2015. A polyaniline based ultrasensitive potentiometric ımmunosensor for cardiac troponin complex detection. Biosensors and Bioelectronics, 72:100−106.
  • Yang, X., Hibberta, D.B., Alexanderb, P.W., 1998. Flow injection potentiometry by poly(vinyl chloride)membrane electrodes with substituted azacrown ionophores for the determination of lead(II) and mercury(II) ions. Analytica Chimica Acta, 372:387–398.