Kimyasal Tankerlerde Zaman Süreli Kiralamaya Göre Dedveyt Tonaj Aralığının Belirlenmesi

Uluslararası taşımacılık birçok farklı modelle gerçekleştirilmektedir. Bu modeller arasında en büyük paya sahip olan taşımacılık türü deniz yolu taşımacılığıdır. Deniz yolu taşımacılığında farklı tiplerde gemiler bulunmaktadır. Bu gemi tipleri arasında tanker gemileri, yük taşıma alanlarını ve farklı yükleri alma kapasitelerini etkileyen çeşitli tonaj ve yapısal farklılıklara sahiptir. Kimyasal tanker tipi gemiler, denizcilik sektöründe sıklıkla tercih edilen bir tanker türüdür ve kullanımları ulusal ve uluslararası sularda hızla yaygınlaşmaktadır. Aktif olarak çalışan gemilerin belirli bir süre için kiralanması, denizcilik şirketleri ve armatörler tarafından yeni gemi inşası ve sahiplenme yerine tercih edilmektedir. Bu tercih artışı nedeniyle, kimyasal yük taşıması yapacak gemilerin tonajının önemli bir konu olduğu görülmüştür. Kimyasal tankerlerin zaman kiralama amacıyla seçiminde birçok farklı kriter ve yöntem kullanılmaktadır. Özellikle gemi seçim çalışmaları incelendiğinde, dedveyt tonajının (DWT) en yaygın kullanılan kriter olduğu belirlenmiştir. Bu nedenle, bu çalışmada kimyasal tanker seçimi, özellikle tonajları temel alınarak zaman kiralama amacıyla en uygun gemi tonajının belirlenmesi hedeflenmiştir. Denizcilik sektöründe aktif görev yapan uzmanlar tarafından belirlenen beş önemli kriter üzerinden ELECTRE yöntemi kullanılarak, beş farklı tonaj aralığındaki kimyasal tanker tipi gemilerin zaman kiralama açısından en uygun tonajı belirlenmiştir. Analiz sonucunda, en uygun tonaj aralığının 1-10.000 DWT olduğu birinci sırada tercih edildiği tespit edilmiştir. İkinci tercih ise 15.001-20.000 DWT tonaj aralığında yapılmıştır. Bu çalışma sonucunda, uzun süreli kiralama yapacak denizcilik firmalarına ve kiracılara referans tonaj aralıkları önerilmektedir.

Determination of Dedweight Tonnage Range According to Time Charter in Chemical Tankers

International transportation is carried out with many different models. The mode of transportation with the largest proportion of these models is known as the Seaway. There are different types of ships in maritime transport. The different tonnage diversity and structural differences of tanker ships, among these ship types, affect both cargo carrying areas and different cargoes. Chemical tanker ships are extensively utilized in the maritime industry, emerging as one of the foremost vessel types. The utilization of chemical tankers in domestic and international waters witnesses a steady rise. Rather than constructing and owning new ships, maritime enterprises and shipowners opt to lease actively operating vessels for a specific duration. This preference shift has underscored the significance of meticulous ship selection for transporting chemical cargoes, particularly considering tonnage. Various criteria and methodologies are employed to meticulously choose the most suitable chemical tankers for time charter contracts. Among these selection processes, extensive scrutiny of ship selection studies revealed that deadweight tonnage (DWT) stands as the most commonly employed criterion. For this reason, in this study, it is aimed to reveal the most ideal ship based on the chemical tanker selection, especially on the basis of their tonnage. With the ELECTRE method of chemical tanker type ships in 5 different tonnage ranges, the most ideal ship tonnage for time chartering was determined based on 5 important criteria determined by the experts working actively in the maritime field. According to the results of the analysis, the most ideal tonnage range was chosen as 1-10.000 DWT. The second tonnage preference was determined as 15.001-20.000 DWT. As a result of the study, reference tonnage ranges have been proposed to maritime companies and charterers that will make long-term charters.

___

  • Afshari, A., Mojahed, M., & Yusuff, R. M. (2010). Simple additive weighting approach to personnel selection problem. International journal of innovation, management and technology, 1(5), 511.
  • Andersson, J., Gustafsson, R., Eslamdoost, A., & Bensow, R. E. (2021). On the selection of optimal propeller diameter for a 120-m cargo vessel. Journal of Ship Research, 65(02), 153-166.
  • Arıcan, O. H. & Emecen Kara, E. G. (2022). Determination of Chemical Tanker Selection Criteria for Shipping Companies, Mersin Üniversitesi Denizcilik ve Lojistik Araştırmaları Dergisi, 4 (2) , 209-233 . DOI: 10.54410/denlojad.1194715
  • Arslan, O. (2009). Quantitative evaluation of precautions on chemical tanker operations, Process Safety and Environmental Protection, 87(2), 113-120.
  • Balakrishnan, A., & Karsten, C. V. (2017). Container shipping service selection and cargo routing with transshipment limits. European Journal of Operational Research, 263(2), 652-663.
  • Bariha, N., Mishra, I. M., & Srivastava, V. C. (2016). Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India. Journal of loss prevention in the process industries, 40, 449-460.
  • Benayoun, R., Roy, B., & Sussman, B. (1966). ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Note de travail, 49, 2-120.
  • Berndt, T. J. (2002). Friendship quality and social development. Current Directions in Psychological Science, 11, 7-10.
  • Bogdanovic, D., & Miletic, S. (2014). Personnel evaluation and selection by multicriteria decision making method. Economic computation and economic cybernetics studies and research, 48(3), 179-196.
  • Chemical Tanker Market (CTM) (2022). https://www.marketsandmarkets.com/Market-Reports/ adresinden erişildi.
  • Deniz Ticaret Odası. (2020). Sektör raporu 2019, İstanbul.
  • Efecan, V., & Gürgen, E. (2019). Investigation of the usability of renewable energy in maritime transportation, Mersin University Journal of Maritime Faculty, 1(1), 30-39.
  • Elidolu, G., Uflaz, E., Aydin, M., Celik, E., Akyuz, E., & Arslan, O. (2022). Numerical risk analysis of gas freeing process in oil/chemical tanker ships, Ocean Engineering, 266, 113082.
  • Emovon, I., Norman, R. A., & Murphy, A. J. (2016). An integration of multi-criteria decision making techniques with a delay time model for determination of inspection intervals for marine machinery systems, Applied Ocean Research, 59, 65-82.
  • Erikstad, S. O., Fagerholt, K., & Solem, S. (2011). A ship design and deployment model for non-cargo vessels using contract scenarios. Ship Technology Research, 58(3), 132-141.
  • Ffooks, R. C. (1995). Some Important Factors in LNG Tanker Design Selection. Advances in Cryogenic Engineering, 269-275.
  • Görçün, Ö. F. (2022). A novel integrated MCDM framework based on Type-2 neutrosophic fuzzy sets (T2NN) for the selection of proper Second-Hand chemical tankers. Transportation Research Part E: Logistics and Transportation Review, 163, 102765.
  • Insignares, E., Verma, B., & Fuentes, D. (2019). Evaluation Methodology for The Selection of the Combined Propulsion System for An Offshore Patrol Vessel (OPV93C). In Proceeding of The VI International Ship Design & Naval Engineering Congress (CIDIN) And XXVI Pan-American Congress of Naval Engineering, Maritime Transportation and Port Engineering (COPINAVAL), 211-222. Springer, Cham.
  • Kernis, M. H., Cornell, D. P., Sun, C. R., Berry, A., Harlow, T., & Bach, J. S. (1993). There’s more to self-esteem than whether it is high or low: The importance of stability of self-esteem. Journal of Personality and Social Psychology, 65, 1190-1204.
  • Malaksiano, M. О., & Melnyk, O. М. (2020). Vessel selection prospects and suitability assessment for oversized cargo transportation. Scientific Notes of Taurida National VI Vernadsky University.Series: Technical Sciences, 31(70), 1.
  • Malchow, M. B., & Kanafani, A. (2004). A disaggregate analysis of port selection. Transportation Research Part E: Logistics and Transportation Review, 40(4), 317-337.
  • Massami, E. P., & Manyasi, M. M. (2021). Analysis of determinants of work performance for seafarers based on fuzzy Electre model, Journal of Shipping and Trade, 6(1), 7.
  • Meirong, Z., Yi, Y., & Wei, T. (2009). An Analysis of the Legal Issues in Lien Clause in the Time Charter Party. China Oceans L. Rev., 350.
  • Pham, V. V., Hoang, A. T., & Do, H. C. (2020). Analysis and evaluation of database for the selection of propulsion systems for tankers. In AIP Conference Proceedings, Vol. 2235, No. 1, p. 020034. AIP Publishing LLC.
  • Urosevic, S., Karabasevic, D., Stanujkic, D., & Maksimovic, M. (2017). An Approach to Personnel Selection in The Tourism Industry Based on The Swara and the Waspas Methods. Economic Computation & Economic Cybernetics Studies & Research, 51(1).
  • Vandeventer, B. (1974). Analysis of Basic Provisions of Voyage and Time Charter Parties. Tul. L. Rev.,49, 806.
  • Wegener, D. T., & Petty, R. E. (1994). Mood management across affective states: The hedonic contingency hypothesis. Journal of Personality and Social Psychology, 66, 1034-1048. e.edu/owl/resource/560/01/ adresinden erişildi.
  • Wibowo S. & Deng H. (2012). Intelligent Decision Support for Effectively Evaluating and Selecting Ships Under Uncertainty in Marine Transportation. Expert Systems with Applications, 39, 6911–6920.
  • Xie X., Xu D.L., Yang J.B., Wang J. & Ren J. Yu S. (2008). Ship Selection Using A Multiple-Criteria Synthesis Approach, J Mar Sci Technol, 13, 50-62.
  • Yakut, E. Ö. (2004). Bulanık mantık ile Türk Deniz Kuvvetleri’nin gereksinimine uygun gemi seçimi.19? Evidence from inspection data. Transport Policy, 123, 82-103.
  • Yan, R., Mo, H., Guo, X., Yang, Y., & Wang, S. (2022). Is port state control influenced by the COVID-19? Evidence from inspection data. Transport Policy, 123, 82-103.
  • Yang Z. L., Bonsall S. & Wang J. (2011). Approximate TOPSIS for Vessel Selection under Uncertain Environment. Expert Systems with Applications, 38, 14523-14534.
  • Yang Z. L., Mastralis L., Bonsall S. & Wang J. (2008). Incorporating Uncertainty and Multiple Criteria in Vessel Selection. J. Engineering for The Maritime Environment, 223, 177-178.
  • Yang, Z., Maistralis, L., Bonsall, S., & Wang, J..(2018). Use of Fuzzy Evidential Reasoning for Vessel Selection under Uncertainty. In Multi-Criteria Decision Making in Maritime Studies And Logistics (Pp. 105-121). Springer, Cham.
  • Yanie, A., Hasibuan, A., Ishak, I., Marsono, M., Lubis, S., Nurmalini, N., ... & Ahmar, A. S. (2018). Web based application for decision support system with ELECTRE method. In Journal of Physics: Conference Series, Vol. 1028, p. 012054. IOP Publishing.