Seismic Soil-Structure Interaction of a Masonry Structure: Sungurbey Mosque

Seismic Soil-Structure Interaction of a Masonry Structure: Sungurbey Mosque

In existing buildings, it may be necessary to repair, adapt, renew, relocate or demolish buildings and building parts that have come to the end of their usage period due to spatial, functional, technical and economic obsolescence. After the necessary applications to extend the service life of buildings, it is of great importance to analyze the dynamic behavior of buildings under soil-structure interaction and earthquake loads and to obtain accurate results. In this study, the seismic soil-structure interaction of the historical Sungur Bey Mosque, which was first built in 1577 but was disassembled, moved and rebuilt in another area (relocated) in order to preserve its historical and cultural values and extend its service life, was examined. The analysis of the masonry structure that survived after the Sivrice (2020) earthquake, where the great loss of life and property occurred, was carried out with the PLAXIS 3D software program. The real record of the Sivrice NS (2020) earthquake was used in dynamic analysis. Local soil properties obtained as a result of field investigation studies were utilized in numerical modeling. Depending on the result of the analyzes, the effects of soil-structure interaction on a reconstructed historical masonry structure were examined. The results obtained from the analysis showed that the local soil conditions have an amplification effect on seismic waves that may induce structural damages in prospective seismic events.

___

  • [1] Burat, O. (1973). Pertek Baysungur Camii’nin Taşınması. Vakıflar Dergisi,10, s. 290-298.
  • [2] Tükel, A. (1970). 1968 Yili Keban Projesi Restorasyon Calismalari Ön Raporu. 1968 Yaz Calismalari (1968 Summer Work), 1(1), 183-186.
  • [3] Pertek Belediyesi, İlçe Tarihçesi. Retrieved August 15, 2021 from https://pertek.bel.tr/sayfa/tarihce/.
  • [4] T.C. Pertek Kaymakamlığı, Sungur Bey Camii. Retrieved August 15, 2021 http://www.pertek.gov.tr/sungur-beycamii.
  • [5] Danık, E. (2004). Pertek Baysungur ve Ali Çelebi Camii. Vakıflar Dergisi, Vakıflar Genel Müdürlüğü yayınları, S.28, Ankara.
  • [6] Hemeda, S. (2019). 3D finite element coupled analysis model for geotechnical and complex structural problems of historic masonry structures: conservation of Abu Serga church, Cairo, Egypt. Heritage Science, 7(1), 1-19.
  • [7] Creazza, G., Saetta, A. V., Matteazzi, R., & Vitaliani, R. V. (2001). Analysis of masonry structures reinforced by FRP. Guimaraes, 539-545.
  • [8] Turek, M., Ventura, C. E., & Placencia, P. (2002). Dynamic characteristics of a 17th century church in Quito, Ecuador. In Proc. SPIE (Vol. 4753, No. 2, pp. 1259-1264).
  • [9] Durukal, E., Cimilli, S., & Erdik, M. (2003). Dynamic response of two historical monuments in Istanbul deduced from the recordings of Kocaeli and Duzce earthquakes. Bulletin of the Seismological Society of America, 93(2), 694-712.
  • [10] Gentile, C., & Saisi, A. (2007). Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and building materials, 21(6), 1311-1321.
  • [11] Bayraktar, A., Sevim, B., Altunışık, A. C., & Türker, T. (2007). Tarihi Yığma Minarelerin Deprem Güvenliklerinin Operasyonal Modal Analiz Yöntemiyle Belirlenmesi. Tarihi Eserlerin Güçlendirilmesi ve Geleceğe Güvenle Devredilmesi Sempozyumu, 1, 415-428.
  • [12] Bayraktar, A., Türker, T., Sevım, B., Altunişik, A. C., & Yildirim, F. (2009). Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test. Journal of Nondestructive Evaluation, 28(1), 37-47.
  • [13] Doğangün, A., Ural, A., & Meraki, Ş. (2011). Seismic Performance of the Main Entrance of Basılıca (Kızılavlu) at Bergama (İzmir). In WCCE-ECCETCCE Joint Conference 2, Seismic Protection of Cultural Heritage, Canference Proceedings (pp. 333-344).
  • [14] Bayraktar, A., Türker, T., Altunışık, A. C., & Sevim, B. (2011). Structural system identification of cultural heritage structures by ambient vibration testing. In WCCEECCETCCE Joint Conference 2, Seismic Protection of Cultural Heritage, Canference Proceedings (pp. 163-173).
  • [15] Atamturktur, S., Bornn, L., & Hemez, F. (2011). Vibration characteristics of vaulted masonry monuments undergoing differential support settlement. Engineering Structures, 33(9), 2472-2484.
  • [16] Can, H., & Ünay, A. İ. (2012). Tarihi Yapıların Deprem Davranışını belirlemek İçin Sayısal Analiz Yöntemleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27, 1, s. 211- 217.
  • [17] Lourenço, P. B., & Ramos, L. F. (2011). Dynamic Identification and Monitoring of Cultural Heritage Buildings. WCCE-ECCE-TCCE Joint Conference 2, Seismic Protection of Cultural Heritage, Keynote Papers, s. 55-78.
  • [18] Çalık, İ., Bayraktar, A., & Türker, T. (2013). Tarihi Yığma Yapıların Dinamik Karakteristiklerine Restorasyon Etkisinin Çevresel Titreşim Yöntemiyle Belirlenmesi: Rize Merkez Büyük Gülbahar Camisi Örneği. 2. Deprem Mühendisliği ve Sismoloji Konferansı, Bildiriler Kitabı, s. 75-90.
  • [19] Çalık, İsmet ve Bayraktar, A., & Türker, T. (2015). Yığma Taş Duvarlı Camiler İçin İlk Üç Doğal Frekans Aralığının Deneysel Olarak Belirlenmesi. Sekizinci Ulusal Deprem Mühendisliği Konferansı, İstanbul.
  • [20] Menglin, L., & Jingning, W. (1998). Effects of SoilStructure Interaction on Structural Vibration Control, Dynamic Soil-Structure Interaction: Current Research in China and Switzerland, ed. Z. Chuhan & J.P. Wolf, Elsevier Science, Amsterdam, pp. 189-202.
  • [21] Roesset, J. M., & Gonzalez, J. J. (1978). Dynamic interaction between adjacent structures. Dynamic response and wave propagation in soils, 127-166.
  • [22] Solari, G., Stura, D., & Vardanega, C. (1980). On the accuracy of numerical models in 3-D soil–structure interaction. In Proceedings of the seventh world conference on earthquake engineering. Istanbul, Turkey (pp. 237-44).
  • [23] Sivanovic, S. (2000). Seismic response of an instrumented reinforced concrete building founded on piles. In Proceedings of the twelfth world conference on earthquake engineering. Auckland, New Zealand (pp. 1-8).
  • [24] Naghavi, N., & Baziar, M.H. (2008). Parametric Study of The Response of Single PileUnder Lateral Loading At The Pile Head. Iran 6th International Conference on CaseHistories in Geotechnical Engineering Missouri University of Science and Technology, Scholars' Mine.
  • [25] Torabi, H., & Rayhani, M. T. (2014). Three dimensional Finite Element modeling of seismic soil-structure interaction in soft soil. Computers and Geotechnics, 60, pp. 9–19.
  • [26] Pitilakis, D., & Karatzetzou, A. (2015). Dynamic stiffness of monumental flexible masonry foundations. Bulletin of Earthquake Engineering, 13(1), 67-82.
  • [27] Gouasmia, A., Belkhiri, A., & Athmani, A. (2015). Dynamic soil-structure interaction analysis of reinforced concrete buildings. International Journal of Civil and Environmental Engineering, 9(7), 862-868.
  • [28] Kavitha, P. E., Beena, K. S., & Narayanan, K. P. (2016). Numerical Investigations on the Influence of Soil Structure Interaction in the Dynamic Response of SDOF System. Procedia Technology, 25, 178-185.
  • [29] Bovolenta, R., & Bianchi, D. (2020). Geotechnical Analysis and 3D Fem Modeling of Ville San Pietro (Italy). Geosciences, 10(11), 473
  • [30] Faizan, A. A., & Kırtel, O. (2021). Non-linear soil-structure interaction analysis of railway bridge subjected to earthquake ground motions considering different types of soil. Arabian Journal of Geosciences, 14(6), 1-11.
  • [31] ARPAT, E., & ŞAROĞLU, F. (1972). The East Anatolian fault system; thoughts on its development. Bulletin of the Mineral Research and Exploration, 78(78), 1-12.
  • [32] Arpat, E., & Saroglu, F. (1975). Some recent tectonic events in Turkey. Bull. Geol. Soc. Turkey, 18(1), 91-101.
  • [33] Şaroğlu F, Emre Ö, Kuşçu İ (1992) The east Anatolian fault zone of Turkey. Annal. Tecton. 6: 99-125
  • [34] Sengor, A. M. C. (1985). Strike slip deformation basin formation and sedimentation, strike-slip faulting and related basin formation in zones of tectonic escape, Turkey as a case study. Strike-slip Faulting and Basin Formation, 227- 264.
  • [35] Herece, E.İ., & Acar, Ş. (2016). Pertek (Tunceli) dolayının Üst Kretase Tersiyer Jeolojisi/ Stratigrafisi, MTA Dergisi.
  • [36] Barka, A. A. (1992). The north Anatolian fault zone. In Annales tectonicae (Vol. 6, No. Suppl, pp. 164-195).
  • [37] Palutoglu, M., & Tanyolu, E. (2006). Elazığ il merkezi yerleşim alanının depremselliği. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(4), 577-588.
  • [38] General Directorate of Disaster Afairs. GDDA (2019) Seismic Hazard Map of Turkey. Ministry of Public Works and Settlement of Turkey, Ankara
  • [39] Wolf, J. P., & Song, C. (1996). Finite-element modelling of unbounded media. Chichester: Wiley.
  • [40] Ural, A., & Celik, T. (2018). Dynamic Analyses and Seismic Behavior of Masonry Minarets with single Balcony. Aksaray University Journal of Science and Engineering, 2(1), 13-27.