Ti-Ni-Nb-X (Ta and V) Şekil Hatırlamalı Alaşımların Mikroyapısı ve Mikrosertliklerinin Araştırılması

Bu çalışmada hazırlanan Ti-50Ni, Ti-27Ni-23Nb, ve Ti-27Ni-19Nb-4X (Ta ve V) şekil hatırlamalı alaşımlar ark ergitme metodu kullanılarak oluşturuldu. Hazırlanan alaşımların mikrosertlik ve mikroyapıları incelendi. Optik mikroskop ( OM ) ve taramalı elektron mikroskop ( SEM ) görüntüleri, TiNi bazlı şekil hatırlamalı alaşımlara ilave olarak katkılanmış Ta, V ve Nb elementleri ile oda sıcaklığında alınan analizleri ile mikro yapı morfolojilerinde değişiklikler gözlendi. Mikrosertlik sonuçları, şekil hatırlamalı alaşımlara V ve Ta elementleri katkılandığında bu sonuçların değerini artırdığı tespit edilmiştir. Atomikçe eşit olan Ti-Ni ikili şekil hatırlamalı alaşımlarda bulunan mikrosertlik ölçüm sonucu 243 HV olarak bulundu. Bu değer Ti-27Ni-23Nb üçlü şekil hatırlamalı alaşımlar için 354 HV bulundu. Ti-Ni-Nb alaşımına Ta ilavesi ile mikrosertlik değeri yaklaşık 380 HV ye yükselmiştir. Ayrıca, üçlü şekil hatırlamalı alaşıma V elementi katkılanması sonucunda mikrosertlik ölçüm değeri 500 HV olmuştur

Investigate of Microhardness and Microstructure of Ti-Ni-Nb-X (Ta and V) Shape Memory Alloys

In this study, based on designed Ti-50Ni, Ti-27Ni-23Nb, and Ti-27Ni-19Nb-4X (Ta and V) SMAs were prepared using arc melting. The microhardness and microstructure of the prepared alloys were examined. The optical microscope (OM) and Scanning Electron Microscopy (SEM) images can be noted that Nb, Ta, and V addition in substitution to nickel causes a change in the microstructure morphology of TiNi Shape Memory Alloy at room temperature. The microhardness results shown that when V and Ta elements were added to SMAs, the microhardness of the alloys was significantly increased. The microhardness value of equal atomic Ti-Ni SMA was found to 243 HV0.3. This value was determined to 354 HV0.3 in the Ti-27Ni-23Nb ternary SMA. By the addition of Ta into the Ti-Ni-Nb alloy, the microhardness value was enhanced to approximately 380HV, additionally, moreover, by adding Vanadium element to the ternary alloy, the microhardness was increased to about 500 HV.

___

  • 1. Stöckel, D., The shape memory effect-phenomenon, alloys and applications. Proceedings: Shape Memory Alloys for Power Systems EPRI, 1995. 1: p. 1-13.
  • 2. Sathiya, P. and T. Ramesh, Experimental investigation and characterization of laser welded NiTinol shape memory alloys. Journal of Manufacturing Processes, 2017. 25: p. 253-261.
  • 3. Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 2014. 56: p. 1078-1113.
  • 4. Buehler, W.J., J.V. Gilfrich, and R. Wiley, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics, 1963. 34(5): p. 1475-1477.
  • 5. Kauffman, G.B. and I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator, 1997. 2(2): p. 1-21.
  • 6. Zhao, D., et al., Preparation and selective laser sintering of bamboo flour/copolyester composite and post-processing. Journal of Thermoplastic Composite Materials, 2017. 30(8): p. 1045-1055.
  • 7. Richman, R., A. Rao, and D. Hodgson, Cavitation erosion of two NiTi alloys. Wear, 1992. 157(2): p. 401-407.
  • 8. Kaya, I., et al., Shape memory behavior of [111]-oriented NiTi single crystals after stress-assisted aging. Acta Metallurgica Sinica (English letters), 2016. 29(3): p. 282-286.
  • 9. Wu, S., H. Lin, and C. Yeh, A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy. Wear, 2000. 244(1-2): p. 85-93.
  • 10. Sui, J., et al., A study on NiTiNbCo shape memory alloy. Materials Science and Engineering: A, 2009. 508(1-2): p. 33-36.
  • 11. Piao, M., S. Miyazaki, and K. Otsuka, Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy. Materials Transactions, JIM, 1992. 33(4): p. 346-353.
  • 12. Zhang, C., et al., Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy. Scripta Metallurgica et Materialia, 1990. 24(9): p. 1807-1812.
  • 13. Zhang, C., et al., The study of constitutional phases in a Ni47Ti44Nb9 shape memory alloy. Materials Chemistry and Physics, 1991. 28(1): p. 43-50.
  • 14. He, X., et al., Temperature memory effect of Ni47Ti44Nb9 wide hysteresis shape memory alloy. Scripta materialia, 2005. 53(12): p. 1411-1415.
  • 15. Otsuka, K. and C.M. Wayman, Shape memory materials. 1999: Cambridge university press.
  • 16. Bradley, T.G., W.A. Brantley, and B.M. Culbertson, Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 1996. 109(6): p. 589-597.
  • 17. Elahinia, M.H., Shape memory alloy actuators: design, fabrication, and experimental evaluation. 2016: John Wiley & Sons.
  • 18. Dagdelen, F., M. Kok, and I. Qader, Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 2019. 25(6): p. 1420-1427.
  • 19. Kök, M. and G. Ateş, The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application. The European Physical Journal Plus, 2017. 132(4): p. 1-6.
  • 20. Chluba, C., et al., Ultralow-fatigue shape memory alloy films. Science, 2015. 348(6238): p. 1004-1007.
  • 21. Aboutalebi, M., et al., Influences of aging and thermomechanical treatments on the martensitic transformation and superelasticity of highly Ni-rich Ti-51.5 at.% Ni shape memory alloy. Thermochimica Acta, 2015. 616: p. 14-19.
  • 22. Mareci, D., et al., Electrochemical characterization of Ni47. 7Ti37. 8Nb14. 5 shape memory alloy in artificial saliva. Materials and Corrosion, 2012. 63(9): p. 807-812.
  • 23. Balci, E., et al., Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 2021. 136(2): p. 1-13.
  • 24. Qader, I.N., M. Kok, and Z.D. Cirak, The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2020: p. 1-10.
  • 25. Tatar, C., R. Acar, and I.N. Qader, Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus, 2020. 135(3): p. 1-11.