Eklemeli İmalat Yöntemleri ve Kullanılan Malzemeler

Eklemeli imalat (AM) yönteminin uygulanması, zorlukları hakkında bir süreç geçmiş fakat araştırmalar hala devam etmektedir. Eklemeli imalat (AM) yöntemi tasarımdaki esneklik ve çoklu malzemeden oluşan parçaların imal edilebilmesini mümkün kılan bir imalat yöntemidir. Eklemeli imalat teknolojileri başlıca uzay ve havacılık, otomotiv, biyomedikal, savunma sanayi, enerji sektörü gibi önemli endüstri alanları için parça üretiminde kullanılmaktadır. Bu araştırmada eklemeli imalat yöntemleri ve bu yöntemde kullanılan malzemeler incelenmiştir.

Additive Manufacturing of Metals and Methods

The application and complexity of additive manufacturing (AM) has a progression about the challenges but the investigations about AM still continues. Additive manufacturing (AM) method is a manufacturing method that enables the flexibility in design and the fabricability of multi-material parts. The technology of additive manufacturing are used for important industrial areas such as space and aerospace, automotive, biomedical, defense industry, energy industry. In this research, additive manufacturing types and the materials used for this method were investigated.

___

  • [1] Navrotsky, V., Graichen, A. & Brodin, H. (2015). Industrialisation of 3D printing (Additive Manufacturing) for gas türbine components repair and manufacturing, VGB PowerTech Autorenexemplar, 12, pp.48-52.
  • [2] EPMA Raporu. (2018). http://eklemeliimalat.info.tr/.
  • [3] ASTM-International. (2012). ASTM Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies.
  • [4] Herzog, D., Seyda, V., Wycisk, E. & Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, pp.371–392, http://doi.org/10.1016/j.actamat.2016.07.019.
  • [5] Brandl, E., Palm, F., Michailov, V., Viehweger, B. & Leyens, C. (2011). Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Mater. Des. 32, pp.4665-4675.
  • [6] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O. & Zhang, W. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, pp.112–224, https://doi.org/10.1016/j.pmatsci.2017.10.001.
  • [7] Emmelmann, C., Kranz, J., Herzog, D. & Wycisk, E. (2013). Laser additive manufacturing of metals, in: V. Schmidt, M.R. Belegratis (Eds.), Laser Technology in Biomimetics, Springer, Heidelberg, pp.143-161.
  • [8] Carroll, B.E., Palmer, T.A., Besse, A.M. (2015). Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater., 87, pp.309-320.
  • [9] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. & Wicker, R.B. (2012). Metal fabrication by additive manufacturing using laser and electron beam melting Technologies. J. Mater. Sci. Technol., 28 (1), pp.1-14.
  • [10] Nandan, R., DebRoy, T. & Bhadeshia, H.K.D.H. (2008). Recent advances in friction-stir welding- process, weldment structure and properties. Prog Mater Sci, 53 (6), pp.980–1023.
  • [11] Agrawal, B.K. (2007). Introduction to Engineering Materials, Tata McGraw-Hill, New Delhi, p. 79.
  • [12] Yadollahi, A., Shamsaei, N., Thompson, S.M. & Seely, D.W. (2015). Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A, 644, pp.171-183.
  • [13] Majumdar, J.D., Pinkerton, A., Liu, Z., Manna, I. & Li, L. (2005). Microstructure charac terisation and process optimization of laser assisted rapid fabrication of 316L stainless steel. Appl. Surf. Sci., 247, pp.320-327.
  • [14] Mahmood, K. & Pinkerton, A.J. (2013). Direct laser deposition with different types of 316L steel particle: a comparative study of final part properties. J. Eng. Manuf., Vol. 227 (4), pp.520-531.
  • [15] Mazumder, J., Choi, J., Nagarathnam, K., Koch, J. & Hetzner, D. (1997). The direct metal deposition of H13 tool steel for 3-D components. JOM, 49 (5), pp.55-60.
  • [16] Brice, C., Shenoy, R., Kral, M. & Buchannan, K. (2015). Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater. Sci. Eng. A, 648, pp.9-14.
  • [17] Bartkowiak, K., Ullrich, S., Frick, T. & Schmidt, M. (2011). New developments of laser processing aluminium alloys via additive manufacturing technique. Phys. Procedia, 12, pp.393-401.
  • [18] Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F. & Chua, C.K. (2015). Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting. Acta Mater., 97, pp.1-16.
  • [19] Baufeld, B., Brandl, E. & Van Der Biest, O. (2011). Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater. Proc Tech., 211, pp.1146-1158.