Atık Genleştirilmiş Polistiren ve Reçineli Alçı Sıvaların Isıl Analizi

Bu çalışma, atık genleşmiş polistiren (EPS) ve çam ağacı reçinesinden (bağlayıcı olarak) yapılmış sıva veya dekoratif malzemelerin fiziksel özelliklerini araştırmıştır. İki grup halinde 0-3 mm ve 0-6 mm tane çaplarında atık EPS ve kuru karışım ağırlığının %20-80'i oranında reçine ve %0, 0.5, 1 ve 2 oranında reçine ilave edilerek 32 adet numune üretilmiştir. 0-3 mm çaplı numunelerde yoğunluk, termal iletkenlik katsayısı ve basınç %50.64, %82.68 ve %84.91 oranında azaltılmıştır. 0-6 mm çapındaki numunelerde yoğunluk, ısıl iletkenlik katsayısı ve basınç %51.03, %86.55 ve %84.13 oranında azalmıştır. 0-3 mm çapında ve %2 reçineli numunelerde yoğunluk ve ısıl iletkenlik sırasıyla %13.32-10.42 ve %25.37-22.41 azalırken basınç dayanımı %29.50-19.56 artmıştır. 0-6 mm çapında ve %2 reçineli numunelerde yoğunluk ve ısıl iletkenlik sırasıyla %19.60-13.68 ve %17.24-10.25 azalırken, basınç dayanımı %16.27-8.85 artmıştır. Sonuçlar, numunelerin kanal açma ve boya tutma özelliklerinden dolayı iç cephe sıvası, yalıtım sıvası ve dekorasyon malzemesi olarak kullanılabileceğini göstermektedir. Bu sıva ve dekorasyon malzemesi kullanılarak i) ısıtma ve soğutma enerjisinin azaltılması, ii) atık EPS'yi yeniden kullanmasına ve çevre kirliliğinin önlemesine iii) yüksek binalarda bina yükünü azaltmasına yardımcı olacaktır.

The Thermal Analysis of Plaster with Waste Expanded Polystyrene Gypsum and Resin

This study investigated the physical properties of plaster or decorative materials made of waste expanded polystyrene (EPS) and pine tree resin (as a binder). Thirty-two samples were produced by adding waste EPS in 0-3mm and 0-6mm grain diameters in two groups and at 20-80% addition rates and resin at 0, 0.5, 1, and 2% of the dry mix weight. Density, thermal conductivity coefficient, and compressive reduced by 50.64%, 82.68%, and 84.91% in samples with a diameter of 0-3 mm. Density, thermal conductivity coefficient, and compressive reduced by 51.03%, 86.55%, and 84.13% in samples with a diameter of 0-6 mm. Density and thermal conductivity decreased by 13.32-10.42% and 25.37-22.41%, respectively, while compressive strength increased by 29.50-19.56% in samples with a diameter of 0-3 mm and 2% resin. Density and thermal conductivity decreased by 19.60-13.68% and 17.24-10.25%, respectively, while compressive strength increased by 16.27-8.85% in samples with a diameter of 0-6 mm and 2% resin. The results show that the samples can be used as interior plaster, insulation plaster, and decoration material due to their grooving and paint adherence properties. This plaster and decoration material can help us i) reduce heating and cooling energy, ii) reuse waste EPS and prevent environmental pollution, and iii) reduce building load in tall buildings.

___

  • Babu, D. S., Babu, K. G., & Wee, T. H. (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, 1218 — 1223.
  • Bouvard, D., Chaix, J.M., Dendievel, R., Fazekas, A., Létang, J. M., Peix, G., & Quenard, D. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete, Cement and Concrete Research, 37, 1666 -1673.
  • Chen, B., & Liu, J. (2004). Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement and Concrete Research, 34, 1259 — 1263.
  • Nabajyoti, S., & Brito, J. (2012). Use of plastic waste as aggregate in cemant mortar and concrete preparation: A review, Construction and Building Materials, 34, 385–401.
  • Miled, K., Sab, K., & Roy, R. L. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modeling, Mechanics of Materials, 39, 222-240.
  • Gnip, I.., Vejelis, S., & Vaitkus, S. (2012). Thermal conductivity of expanded polystyrene (EPS) at 10oC and its conversion to temperatures within interval from 0 to 50 oC, Energy and Buildings, 52, 107-111.
  • Demirbogga, R., & Kan A. K. (2012). Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes, Construction and Building Materials, 35, 730–734.
  • Rossignolo, Y. A., & Agnesini, M. V. C. (2002). Mechanical properties of polymer modified lightweight aggregate concrete, Cement and Concrete Research, 32, 329-334.
  • Doroudiani, S., & Omidian, H. (2010). Environmental health and safety concerns of decorative mouldings made of expanded polystyrene in buildings, Building and Environment, 45, 647-654.
  • Mıhlayanlar, E., Dilmac, S., & Güner, A. (2008). Analysis of the effect of production process parameters and density of expanded polystyrene insulation boards on mechanical properties and thermal conductivity, Materials and Design, 29, 344-352.
  • Bicer, A. (2020). Thermal properties of gypsum plaster with fly ash, International Journal of Eastern Anatolia Science Engineering and Design, 2(1), 120-138.
  • Bicer, A. (2020). Effect of pine resin on the thermal and mechanical properties of plaster with pumice. DUJE (Dicle University Journal of Engineering, 12 (3), 523-533, 2021
  • Mohammadifar, M.A., Musav, S.M., Kiumarsi, A., Williams, P. (2006). Solution properties of pine tree resinin (water-soluble part of gum pine tree resin exudate from Astragalus Gossypinus, International Journal of Biological Macromolecules, 38, 31—39.
  • Denko, S. (1990). Shotherm Operation Manual No: 125-2.K.K, Instrument Products Department, 13-9 Shiba Daimon, Tokyo 105, Japan.
  • Vysnıauskas, V.V., Zıkas, A.A. (1988). Determination of the thermal conductivity of ceramics by the Hot-Wire Technique, Heat Transfer Soviet Research, 20 (1), 137-142.
  • TS 699/T1. (2016). The test and experiment methods of natural building stones, TSE, Ankara.
  • ASTM C 109-80. (1983). Standards ASTM Designation, Standard test method for compressive strength of hydraulic cement mortars.
  • TSE 500. (2000). Turkish Standard. Ankara.
  • TSE 4045. (1984). Yapı malzemelerinde kapiler su emme tayini, Turkish Standard, Ankara.
  • BS 812-109 Standards. (1990). Testing aggregates-part 109: methods for determination of moisture content. British Standards Institution
  • Kaya, A., Kar, F. (2016). Properties of concrete containing waste expanded polystyrene and natural resin, Construction and Building Materials, 105: 572-578.
  • Sariisik, A., Sariisik, G. (2002). New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate, Materials and Structures, 45(9), 1345-1357.
  • Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B., Queneudec, M. (2008). Thermal conductivity of cement composites containing rubber waste particles experimental study and modelling. Construction and Building Materials, 22, 573-579.
  • [Bicer, A., Celik, N. (2020). Influence of pine tree resin on thermo-mechanical properties of pumice-cement composites, Cement and Concrete Composites, 112, September 2020, 103668.
  • Bicer, A., Kar, F. (2017). Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth, Thermal Science and Engineering Progress, 1, 59-65.