THE ANTIOXIDANT ACTIVITY OF APIUM GRAVEOLENS

THE ANTIOXIDANT ACTIVITY OF APIUM GRAVEOLENS

Plants are an important source of natural active products that differ depending on the chemical components they contain. Since extracts and phytochemicals isolated from plants show biological activity in vitro and in vivo, today plants are used as alternative treatment sources. Apium graveolens (celery) has powerful antioxidant properties to remove free radicals due to compounds such as coumarin, alkaloids, steroids, phenols, essential oils, sesquiterpene alcohols, caffeic acid, p-coumaric acid, ferulic acid, apigenin, luteolin, tannin, saponin and kaempferol. Celery with different compounds and different concentrations has various healing effects. The aim of this study was to review the antioxidant activity of celery.

___

  • [1] Shirzad, H., Taji, F., & Rafieian-Kopaei, M. (2011). Correlation Between Antioxidant Activity of Garlic Extracts and WEHI-164 Fibrosarcoma Tumor Growth in BALB/c Mice. Journal of Medicinal Food, 14(9), 969–974.
  • [2] Asgary Sedigheh. (2011). Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats. African Journal of Pharmacy and Pharmacology, 5(23).
  • [3] Zahoor, A. L., Yaqoob, L., Shaukat, S. K., Aijaz, A. W., & Mohd, I. R. (2015). Hepatoprotective medicinal plants used by the Gond and Bhill tribals of District Raisen Madhya Pradesh, India. Journal of Medicinal Plants Research, 9(12), 400–406.
  • [4] Asadi-Samani, M., Kooti, W., Aslani, E., & Shirzad, H. (2015). A Systematic Review of Iran’s Medicinal Plants With Anticancer Effects. Journal of Evidence- Based Complementary & Alternative Medicine, 21(2), 143–153.
  • [5] Hazafa, A., Rehman, K.-U.-, Jahan, N., & Jabeen, Z. (2019). The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutrition and Cancer, 72(3), 386–397.
  • [6] Tauchen, J., Huml, L., Bortl, L., Doskocil, I., Jarosova, V., Marsik, P., Frankova, A., Clavo Peralta, Z. M., Chuspe Zans, M.-E., Havlik, J., Lapcik, O., & Kokoska, L. (2018). Screening of medicinal plants traditionally used in Peruvian Amazon for in vitro antioxidant and anticancer potential. Natural Product Research, 33(18), 2718–2721.
  • [7] Perez Gutierrez, R. M., Muñiz-Ramirez, A., Campoy, A. H. G., Flores, J. M. M., & Flores, S. O. (2018). Polyphenols of leaves of Apium graveolens inhibit in vitro protein glycation and protect RINm5F cells against methylglyoxal-induced cytotoxicity. Functional Foods in Health and Disease, 8(3), 193.
  • [8] Kooti, W., Farokhipour, M., Asadzadeh, Z., Ashtary-Larky, D., & Asadi- Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: a systematic review. Electronic Physician, 8(1), 1832–1842.
  • [9] Kooti, W., Ali-Akbari, S., Asadi-Samani, M., Ghadery, H., & Ashtary-Larky, D. (2015). A review on medicinal plant of Apium graveolens. Advanced Herbal Medicine, 1(1), 48-59.
  • [10] Kooti, W., Moradi, M., Ali-Akbari, S., Sharafi-Ahvazi, N., Asadi-Samani, M., & Ashtary-Larky, D. (2015). Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. Journal of HerbMed Pharmacology, 4(1), 1-9.
  • [11] Gauri, M., Ali, S. J., & Khan, M. S. (2015). A Review of Apium graveolens (Karafs) with special reference to Unani Medicine, 2, 131-136.
  • [12] W. S. Jung. (2011). In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves. Journal of Medicinal Plants Research, 5(32).
  • [13] Barnes, J., Anderson, L. A., & Phillipson, J. D. (2002). Herbal medicines: Joanne Barnes, Linda A. Anderson, J. David Phillipson. A guide for healthcare professionals.
  • [14] Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griel, A. E., & Etherton, T. D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113(9), 71–88.
  • [15] Labrador, V., Freire, P. F., Martín, J. P., & Hazen, M. J. (2007). Cytotoxicity of butylated hydroxyanisole in Vero cells. Cell biology and toxicology, 23(3), 189-199.
  • [16] Khare, C. P. (2008). Indian medicinal plants: London: Springer Science Pub.
  • [17] Aydemir, T., & Becerik, S. (2011). Phenolic content and antioxidant activity of different extracts from Ocimum basilicum, Apium graveolens and Lepidium sativum seeds. Journal of Food Biochemistry, 35(1), 62-79.
  • [18] Bohlmann, F. (1967). Polyacetylenverbindungen, CXXXIX. Notiz über die Inhaltsstoffe von Petersilie‐und Sellerie‐Wurzeln. Chemische Berichte, 100(10), 3454-3456.
  • [19] Al-Asmari, A., Athar, Md. T., & Kadasah, S. (2017). An updated phytopharmacological review on medicinal plant of arab region: Apium graveolens Linn. Pharmacognosy Reviews, 11(21), 13.
  • [20] Petrova, I., Petkova, N., Kyobashieva, K., Denev, P., Simitchiev, A., Todorova, M., & Dencheva, N. (2014). Isolation of pectic polysaccharides from celery (Apium graveolens var. rapaceum DC) and their application in food emulsions. Türk Tarım ve Doğa Bilimleri Dergisi, 1(Özel Sayı-2), 1818-1824.
  • [21] Nagella, P., Ahmad, A., Kim, S.-J., & Chung, I.-M. (2011). Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacology and Immunotoxicology, 34(2), 205–209.
  • [22] Beier, R. C., Ivie, G. W., Oertli, E. H., & Holt, D. L. (1983). HPLC analysis of linear furocoumarins (psoralens) in healthy celery (Apium graveolens). Food and Chemical Toxicology, 21(2), 163–165.
  • [23] Ngo-Duy, C.-C., Destaillats, F., Keskitalo, M., Arul, J., & Angers, P. (2009). Triacylglycerols of Apiaceae seed oils: Composition and regiodistribution of fatty acids. European Journal of Lipid Science and Technology, 111(2), 164–169.
  • [24] Li, P., Jia, J., Zhang, D., Xie, J., Xu, X., & Wei, D. (2014). In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food Funct., 5(1), 50–56.
  • [25] Birt, D. F., Mitchell, D., Gold, B., Pour, P., & Pinch, H. C. (1997). Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer research, 17(1A), 85-91.
  • [26] Chen, J. H., & Ho, C.-T. (1997). Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry, 45(7), 2374–2378.
  • [27] Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M., & Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1– 2), 136–138.
  • [28] Shukla, S., Mishra, T., Pal, M., Meena, B., Rana, T. S., & Upreti, D. K. (2016). Comparative analysis of fatty acids and antioxidant activity of Betula utilis bark collected from different geographical region of India. Free Radicals and Antioxidants, 7(1), 80–85.
  • [29] Favre, J., Yıldırım, C., Leyen, T. A., Chen, W. J. Y., van Genugten, R. E., van Golen, L. W., Garcia-Vallejo, J.-J., Musters, R., Baggen, J., Fontijn, R., van der Pouw Kraan, T., Serné, E., Koolwijk, P., Diamant, M., & Horrevoets, A. J. G.
  • (2015). Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol., 75, 7–18.
  • [30] Woods, J. A., Jewell, C., & O’Brien, N. M. (2001). Sedanolide, a Natural Phthalide from Celery Seed Oil: Effect on Hydrogen Peroxide andtert-Butyl Hydroperoxide-Induced Toxicity in HepG2 and CaCo-2 Human Cell Lines. In Vitro & Molecular Toxicology, 14(3), 233–240.
  • [31] Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323–328.
  • [32] Silva, A. C. R., Lopes, P. M., Azevedo, M. M. B. de, Costa, D. C. M., Alviano, C. S., & Alviano, D. S. (2012). Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules, 17(6), 6305–6316.
  • [33] Ciftci, O., Ozdemir, I., Tanyildizi, S., Yildiz, S., & Oguzturk, H. (2011). Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicology and Industrial Health, 27(5), 447–453.
  • [34] Kolarovic, J., Popovic, M., Zlinská, J., Trivic, S., & Vojnovic, M. (2010). Antioxidant Activities of Celery and Parsley Juices in Rats Treated with Doxorubicin. Molecules, 15(9), 6193–6204.
  • [35] Al-Sa’aidi, J. A., Alrodhan, M. N., & Ismael, A. K. (2012). Antioxidant activity of n-butanol extract of celery (Apium graveolens) seed in streptozotocininduced diabetic male rats. Research in Pharmaceutical Biotechnology, 4(2), 24- 29.
  • [36] Yıldız, L., Başkan, K. S., Tütem, E., & Apak, R. (2008). Combined HPLCCUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta, 77(1), 304-313.
  • [37] Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. Journal of Food Science, 75(1), C9–C13.
  • [38] Shanmugapriya, R., & Ushadevi, T. (2014). In vitro antibacterial and antioxidant activities of Apium graveolens L. seed extracts. Int J Drug Dev Res, 6(3), 165-70.
  • [39] Ud Din, Z., Shad, A. A., Bakht, J., Ullah, I., & Jan, S. (2015). In vitro antimicrobial, antioxidant activity and phytochemical screening of Apium graveolens. Pakistan Journal of Pharmaceutical Sciences, 28(5).
  • [40] Hassanen, N. H., Eissa, A. M. F., Hafez, S. A. M., & Mosa, E. A. (2015). Antioxidant and antimicrobial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. Int. J. Curr. Microbiol. App. Sci, 4(3), 284-296.
  • [41] Ksouda, G., Hajji, M., Sellimi, S., Merlier, F., Falcimaigne-Cordin, A., Nasri, M., & Thomasset, B. (2018). A systematic comparison of 25 Tunisian plant species based on oil and phenolic contents, fatty acid composition and antioxidant activity. Industrial Crops and Products, 123, 768–778.
  • [42] Han, L., Gao, X., Xia, T., Zhang, X., Li, X., & Gao, W. (2019). Effect of digestion on the phenolic content and antioxidant activity of celery leaf and the antioxidant mechanism via Nrf2/HO‐1 signaling pathways against Dexamethasone. Journal of Food Biochemistry, 43(7).
  • [43] Popović, M., Kaurinović, B., Trivić, S., Mimica-Dukić, N., & Bursać, M. (2006). Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative Stress in mice treated with carbon tetrachloride. Phytotherapy Research, 20(7), 531–537