Silica-coated magnetic Fe3O4 nanoparticles as efficient nano-adsorbents for the improvement of the vapor-phase adsorption of benzene
Silica-coated magnetic Fe3O4 nanoparticles as efficient nano-adsorbents for the improvement of the vapor-phase adsorption of benzene
This study focused on the synthesis of silica-coated magnetic Fe3O4 (Fe3O4@SiO2) nanoparticles and their application for the improvement of the vapor-phase adsorption of benzene. The magnetic Fe3O4@SiO2 nanoparticles were synthesized according to the co-precipitation method, while their characterization was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) surface area analyses. The experimental parameters were optimized to achieve the maximum adsorption capacity for the vapor-phase benzene by Box-Behnken design (BBD) under response surface methodology (RSM). The magnetic Fe3O4@SiO2 nanoparticles adsorbed 197.50 mg/g of the vapor-phase benzene under the following optimum conditions: 39.48 min residence time, 14.21 ppm initial benzene concentration and 26.51°C temperature. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were used to evaluate the adsorption equilibrium data, and the results were found to be well fitted to the D-R model. The kinetic data obeyed the pseudo-second-order kinetic model for the vapor-phase adsorption of benzene by magnetic Fe3O4@SiO2 nanoparticles. This study demonstrated the application potential of magnetic Fe3O4@SiO2 nanoparticles as promising low-cost nano-adsorbents for the vapor-phase adsorption of benzene.
___
- Wallace, L. A. Environ. Health Perspect. 1989, 82, 165-169.
- Yang, X.; Yi, H.; Tang, X.; Zhao, S.; Yang, Z.; Ma, Y.; Feng, T.; Cui, X. J. Environ. Sci. 2018, 67, 104-114.
- Wibowo, N.; Setyadhi, L.; Wibowo, D.; Setiawan, J.; Ismadji, S. J. Hazard. Mater. 2007, 146 (1-2), 237-242.
- Roto, R.; Yusran, Y.; Kuncaka, A. Appl. Surf. Sci. 2016, 377, 30-36.
- Zandipak, R.; Sobhan Ardakani, S.; Shirzadi, A. Sep. Sci. Technol. 2020, 55 (3), 456-470.
- Kutluay, S.; Baytar, O.; Şahin, Ö. J. Environ. Chem. Eng. 2019, 7 (2), 102947.
- Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Chem. Eng. J. 2015, 259, 79-89.
- Ma, C.; Li, C.; He, N.; Wang, F.; Ma, N.; Zhang, L.; Lu, Z.; Ali, Z.; Xi, Z.; Li, X. J. Biomed. Nanotechnol. 2012, 8 (6), 1000-1005.
- Vohra, M. S. Arab. J. Sci. Eng. 2015, 40 (11), 3007-3017.
- Padmavathy, V. Bioresour. Technol. 2008, 99 (8), 3100-3109.
- Borandegi, M.; Nezamzadeh-Ejhieh, A. Colloids Surf. A. Physicochem. Eng. 2015, 479, 35-45.
- Kutluay, S.; Baytar, O.; Şahin, Ö. Res. Eng. Struct. Mater. 2019, 5 (3), 279-298.
- Zouboulis, A.; Loukidou, M.; Matis, K. Process Biochem. 2004, 39 (8), 909-916.
- Kutluay, S. BEÜ Fen Bilimleri Dergisi 2019, 8 (4), 1432-1445.
- Vora, S.; Khimani, M.; De, C. J. Dispers. Sci. Technol. 2013, 34 (7), 947-956.
- Salih, W. M.; Gzar, H. A.; Hassan, N. F. J. Eng. 2012, 18 (9), 1042-1054.
- Hu, Q.; Zhang, Z. J. Mol. Liq. 2019, 277, 646-648.