Havacılıkta Doğadan Esinlenen Uçan Taşıtlar ve Gelecekteki Meydan Okumalar

Modern kent savaşı meydan okumaları kirli, mat ve tehlikeli (D3) çevre sınırlarında uçabilen yüksek çeviklikte, uçan makineleri gerektirmiştir. Havacılık ve malzeme alanındaki son teknolojik gelişmeler kuşların ve böceklerinkine benzer tasarımların ve uçuş rejimlerinin keşfini ortaya çıkarmıştır. 6 inch ölçüye kadar olan tüm boyutlardaki robotlar Mikro Hava Taşıtları (Micro Air Vehicles (MAVs)) olarak, 1 inch ve daha küçük ölçüde olan olanlar Nano Hava Taşıtları (Nano Air Vehicles (NAVs)) olarak adlandırılmıştır. Bu uçuş rejiminde, basit tasarımları nedeni ile genelde sabit kanat antenli taşıtlar tercih edilmiştir ancak bunların gezinme yetenekleri yoktur. Döner kanatlı tasarımlar da gezinme yeteneği ilavesi ile takip edebilir olmuştur ancak bunlar, havada daha hızlı hareket edemezler ve dahili bataryalarının kapasiteleri ve ebatları yüzünden dayanıklılıkları sınırlıdır. Kuşların ve böceklerin manevra kabiliyetlerini takip edebilmek için, aynı kanat yapısını etkili bir şekilde kullanılarak itme ve kalkma hareketlerini yapabilen çırpan kanat tasarımları gerekmektedir. Gelecekte, malzemeler, üretim teknolojisi ve elektronik minyatürizasyon alanlarındaki gelişmeler, çok titiz görev profilleri ile doğal kuş ve böceklere benzer çırpan kanatlı robotların tasarım ve gelişimine imkan sağlayacaktır. Bu çalışma, kent savaşları boyunca karşılaşılacak olan meydan okumalarda böcek ve kuş uçuşlarını taklit eden çırpan kanatlı tasarımların gerekliliğini vurgulamayı amaçlanmıştır.

Nature Inspired Flying Vehicles and Future Challenges in Aerospace

The challenges of modern urban warfare require high agility flying machines capable of flight in confined dirty, dull and dangerous (D3) environments. Recent technological advancements in the field of aerospace and materials have enabled the exploration of flight regimes and designs similar to those of birds and insects. Flying robots with a size limit of 6 inches in all dimensions are called Micro Air Vehicles (MAVs) [1] and smaller ones with the size constraint of 1 inch are termed Nano Air Vehicles (NAVs). Fixed wing aerial vehicles are generally preferred in this flight regime due to simplistic design but these lack the hovering capability. Rotary wing designs are also being pursued with added hovering capability, but these cannot move faster through the air and their endurance is limited by the size and capacity of on-board batteries. In order to mimic the maneuverability of birds and insects, flapping wing designs are required which could produce lift and thrust efficiently using the same wing planform. Future, advancements in materials, manufacturing technology and miniaturization of electronics will enable design and development of flapping wing robots similar to natural birds and insects with very demanding mission profiles. This paper aims at highlighting the future requirements of urban warfare along with the challenges being faced to pursue flapping wing designs mimicking insects and birds flight.

___

  • J. M. McMichael, and M. S. Francis, “Micro Air Vehicles Toward a New Dimension in Flight”, DARPA Report, USA, 1997.
  • C. Galinski and R. Zbikowski, “Some Problems of Micro Air Vehicles Development”, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 55, No. 1: pp. 91 - 98, 2007.
  • M. A. Naqvi, H. R. Shah, A. Ali, F. Naeem, “Design and Development of a Small Scale Fixed Wing Aerial Vehicle for over the hill Missions in Urban Warfare”, Proceedings of International Bhurban Conference on Applied Sciences & Technology, IBCAST-2014, Pakistan, 2014.
  • M. A. Naqvi, H. R. Shah, S. Ahmed, Z. Shabbir, F. Naeem, “Aerodynamic Design, Performance Evaluation and Full Scale Fabrication of a Micro Air Vehicle (MAV)”, Proceedings of International Bhurban Conference on Applied Sciences & Technology, IBCAST-2014, Pakistan, 2014.
  • A. Charlton, “Sochi drone shooting Olympic TV, not terrorists”, The Washington Post, February 10, 2014.
  • L. Petricca, P. Ohlckers and C. Grinde, “Micro- and Nano-Air Vehicles: State of the Art”, International Journal of Aerospace Engineering, Article ID 214549, Hindawi Publishing Corporation, 2011.
  • R. Johnson, “Micro-Drones Combined With DNA Hacking Could Create A Very Scary Future”, Internet:http://www.businessinsider.com/government collected dna and future micro drones are downright scary 2012-10, October 28, 2012.
  • D. L. Altshuler, R. Dudley, C. P. Ellington, “Aerodynamic forces of revolving hummingbird wings and wing models”, Journal of Zoology, Vol. 264: pp. 327 - 332, 2004.
  • H. Heinrich, “Structure, Form, Movement”, Van Nostrand Reinhold, New York, 1966.
  • M. H. Dickinson, F. O. Lehmann, W. P. Chan, “The control of mechanical power in insect flight”. American Zoologist, Vol. 38: pp. 718 - 728, 1998.
  • “Smallest Insect Caught on Video”, Internet: http://www.clhsonline.net/sciblog/index.php/2011/05/smallest insect caught on video/, May 29, 2011.
  • G. K. Taylor, R. L. Nudds and A. L. R. Thomas, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency”, Nature, Vol. 425 : pp 707-711, 2003.
  • J. M. Grasmeyer, M. T. Keennon, “Development of the Black Widow Micro Air Vehicle”, 39th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2001-0127, Reno, NV, USA, 8-11 January 2001.
  • “Crazyflie Nano Quadcopter”, Internet: http://www.dudeiwantthat.com/entertainment/rc-toys/crazyflie- nano-quadcopter.asp
  • IEEE Spectrum, “Circuit Could Swap Ultracapacitors for Batteries”, Internet: http://spectrum.ieee.org/semiconductors/design/circuit-could-swap-ultracapacitors-for-batteries., June 2001.
  • D. J. Pines, F. Bohorquez,“Challenges Facing Future Micro Air Vehicle Development”, Journal of Aircraft, Vol. 43, no. 2, 2006.
  • “Micro Air Vehicles”, Internet: http://www.nal.res.in/pdf/MAV.pdf
  • M. A. Naqvi, R. C. Michelson, “Extraterrestrial Flight (Entomopter Based Mars Surveyor)”, von Karman Institute for Fluid Dynamics RTO/AVT Lecture Series on Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emerging UAV Technology, Brussels Belgium, 24-28 November 2003.
  • A. Colozza, R. C. Michelson, M. A. Naqvi, “Planetary Exploration Using Biomimetics- An Entomopter for Flight on Mars”, Phase II Final Report, NASA Institute for Advanced Concepts Project, NAS5-98051, Oct, 2002.
  • “Cyborg beetles to be the US military’s latest weapon”, Internet: http://phys.org/news174812133.html, October 15, 2009.
  • “Robotic insects make first controlled flight”, Internet: http://wyss.harvard.edu/viewpressrelease/110, May 2, 2013.
  • T. Hylton, “Nano Air Vehicle program”, Internet: http://www.darpa.mil/dso/thrusts/materials/multfunmat/ nav/index.htm, 2010.
  • T. Nick Pornsinsirirak, S. W. Lee, H. Naseef, J. Grasmeyer, Y. C. Tai, C. M. Ho, M. Keennon, “MEMS Wing Technology for a Battery Powered Ornithopter”, International Conference on Micro Electro Mechanical Systems, 13th (MEMS 2000), Miyazaki, Japan, 23-27 January, 2000.
  • R. J. Wood, S. Avadhanula, E. Steltz, “An autonomous palm-sized gliding micro air vehicle design, fabrication, and results of a fully integrated centimeter-scale MAV”, IEEE Robotics and Automation Magazine, Vol. 14, No. 2: pp. 82 - 91, 2007.
  • A. Cox, D. Monopoli, D. Cveticanin, M. Goldfarb, and E. Garcia, “The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles”, Journal of Intelligent Material Systems and Structures, Vol. 13, pp. 611 615, 2002.
  • “International Aerial Robotics Competition”, Internet: http://www.aerialroboticscompetition.org
  • V. OL Michael, “Unsteady Low Reynolds Number Aerodynamics for Micro Air Vehicles (MAVs)”, Air Force Research Laboratory Final Report, May, 2010.
  • P. J. Kunz, I. Kroo, “Analysis and Design of Airfoils for Use at Ultra Low Reynolds Number”, Proceedings of a Workshop on Fixed and Flapping Flight at Low Reynolds Numbers, Notre Dame, 2000.
  • T. Lutz and S. Wagner, “Numerical Optimization and Wind-Tunnel Testing of Low Reynolds Number Airfoils”, Proceedings of Conference on Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, University of Notre Dame, Indiana, USA, June 2000.
  • P. Shetty, M. B. Subrahmanya, D. S. Kulkarni, B. N. Rajani, “CFD Simulation of Flow Past MAV Wings”, Symposium on Applied Aerodynamics and Design of Aerospace Vehicle (SAROD 2011), Bangalore, India, November 16-18, 2011.
  • R. Dudley, “Unsteady Aerodynamics: Biomechanics”, Internet: http://www.physics.ohio-state.edu/ wilkins/writing/Assign /topics/fly/dudley.html.
  • M. A. Naqvi, “Prediction of Circulation Control Performance Characteristics for Super STOL & STOL Applications”, PhD Dissertation, Georgia Institute of Technology, Atlanta, USA, 2006.
  • M. A. Naqvi, R. C. Michelson, “Beyond Biologically-Inspired Insect Flight”, von Karman Institute for Fluid Dynamics RTO/AVT Lecture Series on Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emerging UAV Technology, Brussels Belgium, 24-28 November 2003.
  • “Citizen Micro Co., Ltd.”, Internet: http://www.citizen-micro.com/tec/corelessmotor.html, 2009.
  • I. Sher, D. Levinzon Sher, and E. Sher, “Miniaturization limitations of HCCI internal combustion engines”, Applied Thermal Engineering, Vol. 29, No. 2-3, pp. 400411, 2009.
  • “Onera company”, Internet: http://www.onera.fr/defa/micro-machines-thermiques-mems
  • “Fuel Cell Store”, Internet: http://www.fuelcellstore.com.
  • DARPA, “Micro air vehicle powered entirely by fuel cell makes debut flight”, in News, April 2003.
  • J. K. Shang, S. A. Combes, B. M. Finio and R. J. Wood, “Artificial insect wings of diverse morphology for flapping-wing micro air vehicles”, Bio-inspiration & Biomimetics, Article ID 036009, 2009.
  • R. J. Wood, “Liftoff of a 60mg flapping-wing MAV”, Proceedings of International Conference on Intelligent Robots and Systems, pp 1889- 1894, October, 2007.
  • B. Kim, R. N. Candler, M. Hopcroft, M. Agarwal, W. T. Park, and T. W. Kenny, “Frequency stability of wafer-scale encapsulated MEMS resonators”, Proceedings of the13th International Conference on Solid- State Sensors and Actuators and Microsystems (TRANSDUCERS ’05), pp. 1965-1968, Stanford University, June 2005.
  • R.J. Wood, B. Finio, M. Karpelson, K. Ma, N.O. Perez Arancibia, P.S. Sreetharan, H. Tanaka, and J.P. Whitney, “Progress on pico air vehicles”, International Symposium on Robotics Research, Flagstaff, AZ, USA, 2011.
  • M. A. A. Fenelon and T. Furukawa, “Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator”, Mechanism and Machine Theory, Vol. 45, No. 2, pp. 137-146, 2010.
  • Y. Fujihara, T. Hanamoto, and F. Dai,“Fundamental research on polymer material as artificial muscle”, Artificial Life and Robotics, Vol. 12, No. 1-2, pp. 232-235, 2008.
  • W. R. Davis, Jr., B. B. Kosicki, D. M. Boroson, and D. F. Kostishack, “Micro Air Vehicles for Optical Surveillance”, The Lincoln Laboratory Journal, Vol. 9, No. 2: pp 197-214, 1996.
  • V.Kumar,N.Michael,“Opportunities and Challenges with Autonomous Micro Aerial Vehicles”, International Journal of Robotics Research, Vol. 31, No. 11: pp 1279-1291, 2011.
  • J. B. Saunders, O. Call, A. Curtis, A. W. Beard, and T. W. Mclain, “Static and dynamic obstacle avoidance in miniature air vehicles”, Proceedings of the Infotech@Aerospace Conference, 2005.
  • M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating System”, Proceedings of Open-Source Software workshop of the International Conference on Robotics and Automation (ICRA), 2009.
  • M. R. Rohaniand, G. R. Hicks,“Multidisciplinary Design and Prototype Development of a Micro Air Vehicle”, Journal of Aircraft, Vol. 36, No. 1 :pp. 227-234, 1999.
  • “Domestic Unmanned Aerial Vehicles (UAVs) and Drones”, Internet: http://epic.org/privacy/drones/
  • “Todd Humphreys’ Research Team Demonstrates First Successful GPS Spoofing of UAV”, Internet: http://www.ae.utexas.edu/news/features/todd humphreys research team demonstrates first successful gps spoofing of uav