Değişken Geometrili Turboşarj Uygulaması için Akış Kontrol Cihazları Karşılaştırması

Bu çalışmada turboşarz türbinleri için kullanılan iki adet sık rastlanan tipte; biri pivot valf (mil üzerinde dönen kanatçık) ve diğeri duvar üzerinde kayan akış sınırlandırıcılar olmak üzere iki akış kontrolünün ayrı ayrı uygulandığı ve aynı zamanda türbin rotorunun girişi için bu iki mekanizmanın ortak kullanılarak seri dizilimli bir Aktif Kontrol Edilen Turboşarz (ACT)/ Değişken Geometrili Turboşarz (VGT) (bu mekanizmalardan biri ACT için anlık alanda akış kontrolü sağlar – yani anlık olarak eksoz enerjisini geri kazanma yeteneğini sağlar; diğeri geleneksel VGT çalışma şeklinde optimum ortalama nozzle konumunu sağlamaktadır) durumlarını dikkate alan değişken geometrili emiş akışı kontrol cihazının aerodinamik akış performansı hesaplamalı akışkanlar dinamiği tekniği ile incelenmiştir. İki sistemin beraber incelendiği sonraki çalışma, gelişmiş bir ACT sistemine uygulanacak türbin girişi akış kontrolünün daha da optimize edilmiş bir uygulaması amacıyla yapılmıştır. Farklı mekanizmalar için statör geçişlerinin sayısal modelleri geliştirilmiştir ve Strouhal sayısı temelinde akışın kararsızlığı çalışılmıştır. Çalışma sırasında anlaşılmıştır ki akış, geçici şartların kararlı çalışma şartlarının süper pozisyonu ile modellenebileceği şekilde sanki kararlıdır. Sayısal modeller daha sonra deneysel sonuçlar ile doğrulanmıştır. Pivot valf NACA profil kalınlıkları hakkında, sonuçları artan hız ile oluşan kayıplar açısından en uygun sonucu 0018 NACA kalınlığının verdiğini gösteren bir çalışma da yürütülmüştür. Pivot valf benzeşimlerinin sonuçları, akış ayrılması ve sızıntılar gibi kayıp mekanizmalarının etkilerini göstermiştir. 65o valf açısının daha önceden yapılan çalışma sonuçlarını da doğrular şekilde rotora en yüksek hızları taşıdığı tespit edilmiştir. İki mekanizmanın beraber çalıştırıldığı durumda, en yüksek kayıp üreten akış yapısının statör boyunca verimsizlikleri ciddi miktarda arttıran geniş kayan duvar art izi olduğu bulunmuştur. Karşılaştırma açısından pivot valf çok düşük basınç kayıpları ve rotora taşınan yüksek hızlar sergilemiştir.

A Comparison of flow control devices for variable geometry turbocharger application

IIn this paper the aerodynamic performance of two common variable geometry inlet flow control devices for use in turbocharger turbines is investigated, namely: the pivoting vane and sliding wall flow restrictors, as well as a combination of the two mechanisms at the inlet to the turbine rotor, acting as coupled Active Control Turbocharger (ACT)/ Variable Geometry Turbine (VGT) mechanisms in series (one mechanism providing instantaneous area flow control for ACT – an instantaneous exhaust energy recovery capability; the other providing optimum mean nozzle position in conventional VGT mode), using computational fluid dynamics (CFD) techniques. The latter coupled study was carried out with the purpose to explore a more optimal application of turbine inlet flow control to an advanced ACT system. Numerical models of the stator passages for the different mechanisms were developed and a study of the flow unsteadiness based on the Strouhal number was performed. The latter found that the flow was quasi-steady allowing transient conditions to be modelled by superposition of steady state scenarios. The numerical models were subsequently validated using experimental data. An investigation of the NACA profile thickness of the pivoting vanes was also undertaken, the findings of which indicated that a NACA thickness of 0018 constituted the optimum compromise between increased velocity and incurred losses. The results for the pivoting vane simulations demonstrated the effect of loss mechanisms such as leakage and flow separation. It was established that the 65° vane angle delivered the highest velocity to the rotor, corroborating the earlier research findings. In the case of the coupled mechanisms, the main loss generating flow structure was found to be the large wake produced by the sliding wall, which significantly increased the inefficiencies through the stator. In comparison, the pivoting vane mechanism exhibited substantially lower levels of pressure losses and delivered higher velocities to the rotor.

___

  • Pesiridis, A. Turbocharger Turbine Unsteady Aerodynamics with Active Control. PhD Thesis, Imperial College London, 2007.
  • Hiereth, H. and Prenninger, P. Charging the Internal Combustion Engine. Vienna, Springer-Verlag, 2003.
  • Cummins. HY-40V Service Manual, Part No. 4029521. 2001.
  • Pesiridis, A. and Martinez-Botas, R. Experimental Evaluation of Active Flow Control Mixed-Flow Turbine for Automotive Turbocharger Application, Journal of Turbomachinery, January 2007, Volume 129, Issue 1, pp. 44-52.
  • Rajoo, S. Steady and Pulsating Performance of a Variable Geometry Mixed Flow Turbocharger Turbine. PhD Thesis, Imperial College London, 2007.
  • Dixon, S. L. and Hall, C. A. Fluid Mechanics and Thermodynamics of Turbomachinery. Sixth edition. Burlington, Elsevier, 2010.
  • Simpson, A.T. Spence, S.W.T. and Watterson, J.K. A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines. ASME Journal of Turbomachinery, [Online] 131 (3), 2009.
  • Watson, N. and Janota, M. S. Turbocharging the Internal Combustion Engine. Macmillan, London, 1982.
  • Spence, S. W. T., O'Neill, J. W. O. and Cunningham, G. An investigation of the flowfield through a variable geometry turbine stator with vane endwall clearance. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 220 (A8), 899-910, 2006.
  • Tamaki, H., Goto, S., Unno, M. and Iwakami, A. The Effect Of Clearance Flow Of Variable Area Nozzles On Radial Turbine Performance. Proceedings of ASME Turbo Expo, 2008.
  • Tu, J. Yeoh, G. H. and Liu, C. (2008) Computational Fluid Dynamics: A Practical Approach. Amsterdam, London: Butterworth-Heinemann, 2008.
  • White, Frank M. (2010) Fluid Mechanics. seventh edition edition. New York, McGraw-Hill Higher Education.
  • Padzillah, M.H., Rajoo, S., and Martinez-Botas, R.F. (2012) Numerical Assessment of Unsteady Flow Effects on a Nozzled Turbocharger Turbine, Proceedings of the ASME Turbo Expo, 2012