Kararsız Kavitasyonlu Akış Karakteristiklerinin 2 Boyutlu Bir NACA66 Profili Üzerinde OpenFOAM® Kullanılarak Sayısal Olarak İncelenmesi

Akış mekanizmasının karmaşıklığı, kavitasyondaki en önemli problemlerden biridir. Bu çalışmada, OpenFOAM® yazılımı kullanılarak bir NACA66 hidrofili etrafındaki kavitasyonlu akışın ayrıntılı sayısal incelemeleri yapılmıştır. Kavitasyonlu akışın dinamik ve kararsız davranışları, k-ω SST türbülans modeli kullanılarak çözülmüştür. Hesaplamalar için Schnerr-Sauer kavitasyon modeli kullanılmıştır. Sırasıyla “Durum 1” ve “Durum 2” olarak adlandırılan çıkış basıncı koşullarına paralel olarak farklı kavitasyon sayılarına sahip iki farklı 6° ve 8° hücum açısı için sayısal simülasyonlar yapılmıştır. Sonuçlar, Leroux çalışmasının deneysel ve sayısal sonuçlarıyla karşılaştırılmıştır. Leroux deneylerine kıyasla her iki durumda da salınım döngüleri ve akış özellikleri başarılı bir şekilde elde edildi. Yeniden giren jet olarak adlandırılan mekanizmanın, iki durumda da kavitasyon kopmasından birincil olarak sorumlu olduğu gösterildi. Bu mekanizma iki adımdan oluşur: 1) ana bulut ayrılmasına kadar tekrarlı ikincil bulut dökülmesiyle sonuçlanan, yeniden giriş akışı ile kavitasyon arayüzü arasındaki, kapanma bölgesindeki bir etkileşim ve 2) ana bulutun çökmesi tarafından tetiklenen kalan kavitasyonun gelişimini etkileyen bir şok dalgası şeklindedir. Bu çalışmanın ana katkısı, Schnerr-Sauer kavitasyon modeli ile k-ω SST türbülans modelinin kullanılmasının kavitasyon dinamikleri, basınç dağılımı ve kavitasyon formu gibi akış özelliklerinin tahmin edilmesi üzerindeki etkisini incelemektir. Basınç dalgalanmaları ve kavitasyon dinamikleri için kabul edilebilir doğruluk gözlemlenmiştir.

Computational Examination of Unsteady Cavitating Flow Characteristics on a 2D NACA66 Profile by Utilizing OpenFOAM®

The complexity of the flow mechanism is one of the crucial problems in cavitation. In this present study, detailed computational examinations of cavitating flow around a NACA66 hydrofoil were performed by using OpenFOAM® software. Dynamic and unsteady behaviours of cavitating flow were solved utilizing the k-ω SST turbulence model. Schnerr-Sauer cavitation model was used for the calculations. Numerical simulations were performed for 6° and 8° angle of attack with different cavitation numbers and the outlet pressure conditions, the cases are called “Case 1” and “Case 2” respectively. The results were compared with the studies performed by Leroux et. al. Oscillation cycles and flow characteristics were obtained successfully in both cases. The mechanism called the re-entrant jet was shown to be primarily responsible for cavitation break-off in two cases. This mechanism consists of two steps: 1) an interplay between the re-entrant flow and the cavity contact surface in the occlusion region, resulting in recurrent secondary cloud shedding until the primary cloud detachment, and 2) a shock wave triggered by the primary cloud collapsing, which affects the development of the remnant cavity. The main contribution of this study is to examine the impact of using the k-ω SST turbulence model with the Schnerr-Sauer cavitation model on predicting flow characteristics such as cavitation dynamics, pressure distribution and cavity form. Acceptable accuracy has been observed for pressure fluctuations and cavitation dynamics.

___

  • [1] R. A. Furness and S. P. Hutton, “Experimental and Theoretical Studies of Two-Dimensional Fixed-Type Cavities,” J. Fluids Eng., pp. 515-521, 1975.
  • [2] P. A. Lush and P. I. Peters, “Visualisation of the cavitating flow in a venturi type duct using high-speed cine photography,” In Proceedings of the International Association of Hydraulic Engineering and Research Conference on Operating Problems of Pump Stations and Power Plants, pp. 1-13, Amsterdam 1982.
  • [3] B. Stutz and J.-. L. Riboud, “Experiments on unsteady cavitation,” Exp. Fluids 21, pp. 191-198, 1997.
  • [4] Y. Kawanami , H. Kato, H. Yamaguchi, M. Tanimura and Y. Tagaya, “Mechanism and Control of Cloud Cavitation,” Journal of Fluids Engineering, vol. 119, no. 4, pp. 788-794, 1997.
  • [5] R. A. Arndt , C. S. Song, M. Kjeldsen and A. Keller, “Instability of Partial Cavitation: A Numerical/Experimental Approach,” In: Proceedings of 23rd Symposium on Naval Hydrodynamics, Office of Naval Research, pp. 599-615, Val De Ruil France (National Academic Press, Washington, DC) 2000.
  • [6] K. R. Laberteaux and S. L. Ceccio, “Partial cavity flows. Part 1. Cavities forming on models without spanwise variation,” J. Fluid Mech., vol. vol, no. 431, pp. 1-41, 2001.
  • [7] J.-.. A. Astolfi, J.-.. B. Leroux, P. Dorange, J.-.. Y. Billard, F. Deniset and S. de La Fuente, “An Experimental Investigation of Cavitation Inception and Development on a Two-Dimensional Hydrofoil,” J. Ship Res., vol. 44, no. 04, pp. 259-269, 2000.
  • [8] J.-B. Leroux, J. A. Astolfi and J. Y. Billard, “An Experimental Study of Unsteady Partial Cavitation,” J. of Fluids Eng., vol. Vol., no. 126, pp. 94-101, 2004.
  • [9] B. Stutz and J.-.. L. Reboud, “Measurements within unsteady cavitation,” Experiments in Fluids, vol. 29, no. 6, pp. 545-552, 2000.
  • [10] Q. Le, J.-P. Franc and J.-M. Michel , “Partial cavities : global behaviour and mean pressure distribution,” J. of Fluids Eng., pp. 243-248, 1993.
  • [11] P. A. Lush and S. R. Skipp, “High Speed Cine Observations of Cavitating Flow in a Duct,” Int. J. Heat and Fluid Flow, vol. Vol., no. 7, pp. 283-290, 1986.
  • [12] S. Gopalan and J. Katz, “Flow structure and modeling issues in the closure region of attached cavitation,” Phys. Fluids, vol. 12, no. 4, pp. 895-911, 2000.
  • [13] M. Callenaere, J.-P. Franc, J.-M. Michel and M. Riondet, “The cavitation instability induced by the development of a re-entrant jet,” J. Fluid Mech., pp. 223-256, 2001.
  • [14] D. De Lange, G. J. Bruin and L. Van Winjngaarden, “On the Mechanism of Cloud Cavitation-Experiment and Modelling,” In: Proceedings 2nd Int. Sypm. on Cavitation, pp. 45-49, 1994.
  • [15] P. A. Lush and P. I. Peters, “Visualisation of the cavitating flow in a venturi type duct using high-speed cine photography,” In: Proceedings of the International Association of Hydraulic Engineering and Research Conference on Operating Problems of Pump Stations and Power Plant, pp. 1-13, Amsterdam 1982.
  • [16] C. Song and Q. Qin, “Numerical Simulation of Unsteady Cavitating Flows,” In: Proceedings of the Fourth International Symposium on Cavitation, 20-23 June 2001. [17] J.-B. Leroux, O. Coutier-Delgosha and J.-A. Astolfi, “A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil,” Phys. Fluids, vol. 17, no. 5, pp. 1-20, 2005.
  • [18] A. Kubota, H. Kato and H. Yamaguchi, “A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section,” J . Fluid Mech., vol. Vol., no. 240, pp. 59-96, 1992.
  • [19] O. Coutier-Delgosha, R. Fortes-Patella and J. Reboud, “Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation,” J. of Fluids Eng., vol. Vol., no. 125, pp. 38-45, 2003.
  • [20] E. Goncalves and R. F. Patella, “Numerical Simulation of Cavitating Flows with Homogeneous Models,” Computers and Fluids, vol. 38, no. 2009, pp. 1-58, 2009.
  • [21] C. L. Merkle, J. Z. Feng and P. Bueow , “Computational modeling of the dynamics of sheet cavitation,” In: Proceedings of the 3rd International Symposium on Cavitation, pp. 307-311, 1998. [22] F. R. Kunz, A. D. Boger, R. D. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling, S. Venkateswaran and T. R. Govindan, “A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction,” Computers & Fluids, vol. Vol., no. 29, pp. 849-875, 2000.
  • [23] G. H. Schnerr and J. Sauer, “Physical and Numerical Modeling of Unsteady Cavitation Dynamics,” In: ICMF-2001, 4th International Conference on Multiphase Flow, May 27 - June 1 New Orleans, USA, 2001.
  • [24] A. Singhal, B. Yu, M. Athavale , H. Li and Y. Jiang, “Mathematical Basis and Validation of the Full Cavitation Model,” J. of Fluids Eng., vol. 124, no. 3, pp. 617-624, 2002.
  • [25] W. Yuann and G. H. Schnerr, “Optimization of Two-Phase Flow in Injection Nozzles–Interaction of Cavitation and External Jet Formation,” In:Proc.ASME Fluids Engineering Division,Summer Meeting, 14-18 July, Montreal 2002.
  • [26] B. Pouffrey, R. Fortes-Patella and J. Reboud, “Numerical Simulation of Cavitating Flow around a 2D Hydrofoil : "A Barotropic Approach,” In: Fifth International Symposium on Cavitation (CAV2003), 1-4 November,Osaka 2003.
  • [27] T. S. Johansen, J. Wu and W. Shyy, “Filter-Based Unsteady RANS Computations,” Unpublished, Technical Report, University of Florida, 2003.
  • [28] J. Wu, Y. Utturkar and W. Shyy, “Assessment of Modelling Strategies for Cavitating Flow Around a Hydrofoil,” In: Fifth International Symposium on Cavitation (CAV2003), 1-4 November, Osaka, Japan 2003. [29] F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIA A Journal, vol. 32, no. 8, pp. 1598-1605, 1994.
  • [30] G. Zhang , W. Shi, D. Zhang , C. Wang and L. Zhou, “A Hybrid RANS/LES model for simulating time dependent cloud cavitating flow around a NACA66 hydrofoil,” Science China Technological Sciences, vol. 59, no. 8, pp. 1252-1264, 2016.
  • [31] D.-S. Zhang, W. D. Shi, G. Zhang, J. Chen and B. M. van Esch, “Numerical analysis of cavitation shedding flow around a three-dimensional hydrofoil using an improved filter-based model',” Journal of Hydrodynamics, vol. 29, no. 2, pp. 361-375, 2017.
  • [32] B. Ji, X.-W. Luo, X.-X. Peng, Y. Zhang, Y.-L. Wu and H.-Y. Xu, “'Numerical investigation of the Ventilated Cavitating Flow Around and Under-Water Vehicle Based on a Three-Component Cavitation Model,” Journal of Hydrodynamics, vol. 22, no. 6, pp. 753-759, 2010.
  • [33] E. Alpman and E. L. Kavurmacıoğlu, “Investigation of Cavitation Noise of Marine Propeller using Computational Fluid Dynamics,” In: Ulusal Tesisat Mühendisliği Kongresi, pp. 930-937, April 2019.
  • [34] B. Stutz and J.-L. Riboud, “Two phase flow structure of sheet cavitation,” Physics of Fluids, vol. 9, no. 12, pp. 3678-3686, 1997.
  • [35] O. Coutier-Delgosha, J.-L. Reboud, B. Pouffary and R. Patella-Fortes, “Numerical Simulations of Unsteady Cavitating Flows: Some Applications and Open Problems,” In: Fifth International Symposium on Cavitation (CAV2003), 1-4 November, Osaka, Japan 2003.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi