Cryptococcus albidus D24'ten Lipaz Üretimi Üzerindeki En Etkili Besin Maddelerinin Öneminin Belirlenmesi

Bu çalışmada, Cryptococcus albidus D24'ten lipaz enzimi üretimi için kullanılan besiyeri bileşenlerinin Plackett-Burman İstatistiksel Tasarım Yöntemi (PBD) kullanılarak optimizasyonu gerçekleştirilmiş ve ilk adım olarak D24 suşundan lipaz enzimi üretimine etki eden en önemli besin maddeleri belirlenmiştir. PBD'ye göre en yüksek lipaz aktivitesi (19,34 U/ml/dk), Tween 80 (X2) %2,5 (h/h) ve (g/L) Pepton (X4) 8.0, Maya özütü (X6) 7.5, Et ekstraktı (X7) 7.5, Malt Ekstrakt (X8) 7.5, NH4Cl (X9) 6.0, NaNO3 (X10) 1.5, (NH4)NO3 (X12) 6.0, (NH4)HCO3 (X13) 6.0, MgSO4.7H2O (X15) 1.0 ve KH2PO4 (X16) 2.0 bileşenlerini içeren ortam ile 144 saat sonunda elde edilmiştir. PBD'den elde edilen konsantrasyon etkisi (CE) değerlerine göre incelenen on altı bileşik arasında, NH4Cl (CE=7.1587), zeytinyağı (CE=3.5544), (NH4)HCO3 (CE=3.0747) ve tripton (CE=2.1427) daha etkili olarak bulunmuştur. Daha sonra belirlenen bu etkili bileşiklerin optimum konsantrasyonları, Yanıt Yüzey Yöntemi (RSM) ile denenmiştir. Deneysel sonuçlara göre, zeytinyağı (X3) %1.5 (h/h) ve (g/L) tripton (X5) 3.0, NH4Cl (X9) 7.5 ve (NH4)HCO3 (X13) bileşenleri, diğer çalışılan bileşenlerle karşılaştırıldığında, maksimum lipaz aktivitesi (12.03 U/ml/dak) elde edildiği gösterilmiştir. RSM metodolojisi ile elde edilen maksimum lipaz aktivitesi, PBD ile elde edilenden daha düşük olmasına rağmen, bir ünite enzim üretmek için kullanılan besinlerin maliyeti PBD'de 0.104 Euro iken, RSM'de ise sadece 0.0277 Euro olarak belirlenmiştir. Başka bir deyişle, X3, X5, X9 ve X13 kodlu bileşikler kullanılarak lipaz üretimi, uygun maliyetli bir proses sunmaktadır.

Determination of the Significance of the Most Effective Nutrients on Lipase Production from Cryptococcus albidus D24

In this study, the optimization of the medium components used for the production of lipase enzyme from Cryptococcus albidus D24 was performed using the Plackett-Burman statistical design method (PBD), and the most important nutrients affecting the production of lipase enzyme from D24 strain were determined as the first step. According to PBD, the highest lipase activity (19.34 U/ml/min) was obtained with medium including Tween 80 (X2) 2.5% (v/v), and (g/L) Peptone (X4) 8.0, Yeast Extract (X6) 7.5, Beef Extract (X7) 7.5, Malt Extract (X8) 7.5, NH4Cl (X9) 6.0, NaNO3 (X10) 1.5, (NH4)NO3 (X12) 6.0, (NH4)HCO3(X13) 6.0, MgSO4.7H2O (X15) 1.0, and KH2PO4 (X16) 2.0 at the end of 144 h cultivation. Regarding the concentration effect (CE) values obtained from PBD, NH4Cl (CE=7.1587), olive oil (CE=3.5544), (NH4)HCO3 (CE=3.0747), and tryptone (CE=2.1427) were evaluated as the more effective nutrients among the sixteen compounds studied. After that, the optimum concentrations of these effective compounds were experimented with Response Surface Methodology (RSM). Experimental results showed that the medium containing olive oil (X3) 1.5% (v/v), and (g/L) tryptone (X5) 3.0, NH4Cl (X9) 7.5, and (NH4)HCO3 (X13) yielded maximum lipase activity (12.03 U/ml/min) compared to other studied compounds. Although the maximum lipase activity obtained with RSM methodology was lower than that obtained by PBD, the cost of the nutrients used to produce one-unit enzyme is 0.104 Euro in the PBD, while only 0.0277 Euro is spent in RSM. In other words, the production of lipase using compounds coded X3, X5, X9, and X13 provides a cost-effective process.

___

  • Referans 1: Divakar, S. and Manohar B. (2007). In: Industrial Enzymes: Structure, Function and Applications. Use of Lipases in the Industrial Production of Esters. J. Polaina and A. P. MacCabe (eds.), Dordrecht, Springer Netherlands: p 283-300.
  • Referans 2: Anvari, M. (2015). Extraction of lipase from Rhizopus microsporus fermentation culture by aqueous two-phase partitioning. Biotechnol. Biotechnol. Equip., 29(4), 723-731.
  • Referans 3: Venditti, I., Palocci, C., Chronopoulou, L., Fratoddi, I., Fontana, L., Diociaiuti, M., & Russo, M. V. (2015). Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations. Colloids Surf. B., 131, 93-101.
  • Referans 4: Ping, L., Yuan, X., Zhang, M., Chai, Y., & Shan, S. (2018). Improvement of extracellular lipase production by a newly isolated Yarrowia lipolytica mutant and its application in the biosynthesis of L-ascorbyl palmitate. Int. J. Biol. Macromol., 106, 302-311.
  • Referans 5: Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme Microb. Technol., 39(2), 235-251.
  • Referans 6: Anbu, P. (2014). Characterization of an extracellular lipase by Pseudomonas koreensis BK-L07 isolated from soil. Prep. Biochem. Biotechnol., 44(3), 266-280.
  • Referans 7: Priji, P., Unni, K. N., Sajith, S., Binod, P., & Benjamin, S. (2015). Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP 6, a novel rumen bacterium characterized from Malabari goat. Biotechnol. Appl. Biochem., 62(1), 71-78. Referans 8: Vakhlu, J. (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron. J. Biotechnol., 9(1), 69-85.
  • Referans 9: Patel, R. N. (2008). Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev., 252(5-7), 659-701.
  • Referans 10: Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Appl. Biochem. Biotechnol., 166(2), 486-520.
  • Referans 11: Dong, H.N., Zhao, X.M., Yuan, M.A.Y., Zhang, M.H. (2012) Optimization of a synthetic medium for ethanol production by xylose-fermenting Zymomonas mobilis using response surface methodology., Chin. Sci. Bull., 57, 28-29.
  • Referans 12: Maia, M. M. D., Heasley, A., De Morais, M. C., Melo, E. H. M., Morais Jr, M. A., Ledingham, W. M., & Lima Filho, J. L. (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresour. Technol., 76(1), 23-27.
  • Referans 13: Fickers, P., Nicaud, J. M., Gaillardin, C., Destain, J., & Thonart, P. (2004). Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J. Appl. Microbiol., 96(4), 742-749.
  • Referans 14: Rajendran, A., Thirugnanam, M., & Thangavelu, V. (2007). Statistical evaluation of medium components by Plackett-Burman experimental design and kinetic modeling of lipase production by Pseudomonas fluorescens. 6, 469-478.
  • Referans 15: Salihu, A., & Alam, M. Z. (2012). Production and applications of microbial lipases: a review. Sci. Res. Essays, 7(30), 2667-2677.
  • Referans 16: Soleymani, S., H. Alizadeh, H. Mohammadian, E. Rabbani, F. Moazen, H. M. Sadeghi, Z. S. Shariat, Z. Etemadifar & M. Rabbani (2017). Efficient Media for High Lipase Production: One Variable at a Time Approach. Avicenna J. Med. Biotechnol. 9(2), 82.
  • Referans 17: Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. K. M. (2017). Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol., 7, 2087.
  • Referans 18: Abdel-Fattah, Y. R., Soliman, N. A., Yousef, S. M., & El-Helow, E. R. (2012). Application of experimental designs to optimize medium composition for production of thermostable lipase/esterase by Geobacillus thermodenitrificans AZ1. J Genet Eng Biotechnol., 10(2), 193-200.
  • Referans 19: Chauhan, K., Trivedi, U., & Patel, K. C. (2007). Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour. Technol., 98(1), 98-103.
  • Referans 20: Salihu, A., Bala, M., & Bala, S. M. (2013). Application of Plackett-Burman experimental design for lipase production by Aspergillus niger using shea butter cake. Int. Sch. Res. Notices, 2013, 1-5.
  • Referans 21: Al Mamun, M. A., Mian, M. M., Saifuddin, M., Khan, S. N., & Hoq, M. M. (2017). Optimization of fermenting medium by statistical method for production of alkaline protease by Bacillus licheniformis MZK05M9. J. Appl. Biol. Biotechnol., 5(6), 24-28.
  • Referans 22: Maharana, A. K., & Ray, P. (2014). Application of Plackett-Burman Design for improved cold temperature production of lipase by psychrotolerant Pseudomonas sp. AKM-L5. Int. J. Curr. Microbiol. App. Sci, 3(4), 269-282.
  • Referans 23: Lanka, S., & Latha, J. N. L. (2015). Response surface methodology as a statistical tool for fermentation media optimization in lipase production by palm oil mill effluent (POME) isolate Emericella nidulans NFCCI 3643. Int. J. Innov. Res. Sci. Eng.. Technol., 4(4), 2535-2545.
  • Referans 24: Samaei-Nouroozi, A., Rezaei, S., Khoshnevis, N., Doosti, M., Hajihoseini, R., Khoshayand, M. R., & Faramarzi, M. A. (2015). Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles, 19(5), 933-947.
  • Referans 25: Yalçın, H. T., Çorbacı, C., & Uçar, F. B. (2014). Molecular characterization and lipase profiling of the yeasts isolated from environments contaminated with petroleum. J. Basic Microbiol., 54(S1), S85-S92. Referans 26: Rajput, K. N., Patel, K. C., & Trivedi, U. B. (2016). Screening and selection of medium components for cyclodextrin glucanotransferase production by new alkaliphile Microbacterium terrae KNR 9 using Plackett-Burman design. Biotechnol. Res. Int., 2016, 1-7.
  • Referans 27: Montgomery, D. C. (2017). Design and analysis of experiments, 9th edition, Hoboken, New Jersey, John Wiley & Sons, Inc, p. 1-731.
  • Referans 28: Baş, D., & Boyacı, I. H. (2007). Modeling and optimization I: Usability of response surface methodology. J. Food Eng., 78(3), 836-845.
  • Referans 29: Myers, R. H., Montgomery D. C., and C. Anderson-Cook (2009). Response surface methodology. Hoboken, New Jersey, John Wiley & Sons, Inc, p. 38-44.
  • Referans 30: Obradors, N., Montesinos, J. L., Valero, F., Lafuente, F. J., & Sola, C. (1993). Effects of different fatty acids in lipase production by Candida rugosa. Biotechnol. Lett., 15(4), 357-360.
  • Referans 31: Royer, A., Gerard, C., Naulet, N., Lees, M., & Martin, G. J. (1999). Stable isotope characterization of olive oils. I—Compositional and carbon‐13 profiles of fatty acids. J. Am. Oil Chem.' Soc., 76(3), 357-363.
  • Referans 32: Boskou, D., Blekas, G., & Tsimidou, M. (2006). Olive oil composition. In: Olive Oil, D. Boskou (ed.), 2nd edition, Academic Press and AOCS Press, p 41-72.
  • Referans 33: Pau, H. S., & Omar, I. C. (2004). Selection and optimization of lipase production from Aspergillus flavus USM A10 via solid state fermentation (SSF) on rice husks and wood dusts as substrates. Pak. J. Biol. Sci, 7, 1249-1256.
  • Referans 34: Mukhtar, H., Khursheed, S., Mumtaz, M. W., Rashid, U., & Al‐Resayes, S. I. (2016). Optimization of lipase biosynthesis from Rhizopus oryzae for biodiesel production using multiple oils. Chem. Eng. Technol., 39(9), 1707-1715.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi