İndirgenmiş Grafen Oksit ile Kaplanan Pamuk Kumaşın Elektriksel İletkenlik ve Haslık Özelliklerinin İncelenmesi

Bu çalışmada, %100 grafen oksit içeren pat hazırlanarak rakle kaplama makinasında pamuk kumaş üzerine kaplama işlemi gerçekleştirildi. Bu amaçla, grafit partiküllerden kimyasal oksidasyon yöntemiyle grafen oksit sentezlendi. Herhangi bir yardımcı kimyasal kullanılmadan hazırlanan %100 grafen oksitten oluşan hidrosol ile kaplama işleminin ardından grafen oksitin elektriksel olarak iletken yapıya dönüşmesi amacıyla C vitamini ile indirgeme işlemi uygulandı. Grafen oksit ve indirgenmiş grafen oksit kaplanmış kumaşın karakterizasyonu Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile gerçekleştirildi ve yüzey özellikleri taramalı elektron mikroskobu (SEM) ile incelendi. Elektriksel direnç, dört nokta prob tekniği ile ölçüldü. Yıkama ve sürtme haslık testleri gerçekleştirilerek indirgenmiş grafen oksit kaplı kumaşın elektriksel direnç dayanımı belirlendi. Buna göre, grafen oksit kaplanan pamuk kumaşta elektriksel direnç 4.46E+06 Ω/□ olarak elde edildi ve C vitamini ile indirgeme işlemi sonrası elektriksel direnç 2.56E+02 Ω/□ olarak ölçüldü. Yıkama sonrasında elektriksel direnç değerinde kaydadeğer bir değişim olmadığı ancak haslık testleri sonrasında bir miktar artış olduğu gözlendi. Ayrıca, indirgenmiş grafen oksit kaplı pamuk kumaşın elektromanyetik kalkanlama etkinliği de incelendi ve kumaşın katlanmasıyla kalkanlama etkinliğinin arttığı görüldü.

___

  • [1] Shateri-Khalilabad, M. ve Yazdanshenas, M. E. (2013). Fabricating electroconductive cotton textiles using graphene. Carbohydr Polym., 96(1), 190-195.
  • [2] Tissera, N.D., Wijesena, R. N., Perera, J. R., De Silva, K. M. N. ve Amaratunge, G. A. J. (2015). Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Appl Surf Sci, 324, 455-463.
  • [3] Hu, X., Tian, M., Qu, L., Zhu, S., Han, G. (2015). Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon, 95, 625-633.
  • [4] Lu, Z., Mao, C. ve Zhang, H. (2015). Highly conductive graphene-coated silk fabricated via a repeated coating-reduction approach. J Mater Chem C,. 3(17), 4265-4268.
  • [5] Zhao, J., Deng, B., Lv, M., Li, J., Zhang, Y., Jiang, H., Peng, C., Li, J., Shi, J., Huang, Q., Fan, C. (2013). Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater. 2(9), 1259-66.
  • [6] Wang, D., Li, D., Zhao, M., Xu, Y., Wei, Q. (2018). Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Appl Surf Sci. 454, 218-226.
  • [7] Shao, F., Bian, S. W., Zhu, Q., Guo, M. X., Liu, S., Peng, Y. H. (2016). Fabrication of Polyaniline /Graphene /Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability. Chem Asian J. 11(13), 1906-12.
  • [8] Ramadoss, A., Saravanakumar, B. ve Kim, S. J. (2015). Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy. 15, 587-597.
  • [9] Ji, Y., Li, Y., Chen, G., Xing, T. (2017). Fire-resistant and highly electrically conductive silk fabrics fabricated with reduced graphene oxide via dry-coating. Mater Design. 133, 528-535.
  • [10] Gültekin, N. D. ve Usta, İ. (2015). Investigation of Thermal and Electrical Conductivity Properties of Carbon Black Coated Cotton Fabrics. Marmara University Journal of Science. 27(3).
  • [11] Babaahmadi, V., Montazer, M. ve Gao, W. (2018). Surface modification of PET fabric through in-situ reduction and cross-linking of graphene oxide: Towards developing durable conductive fabric coatings. Colloid Surface A. 545, 16-25.
  • [12] Cai, G., Yang, M., Xu, Z., Liu, J., Tang, B., Wang, X. ( 2017). Flexible and wearable strain sensing fabrics. Chem Eng J. 325, 396-403.
  • [13] Kongahge, D., Foroughi, J., Gambhir, S., Spinks, G. M., Wallace, G. G. (2016). Fabrication of a graphene coated nonwoven textile for industrial applications. RSC Adv. 6(77), 73203-73209.
  • [14] Berendjchi, A., Khajavi, R., Yousefi, A. A., Yazdanshenas, M. E. (2016). Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate. Appl Surf Sci. 363, 264-272.
  • [15] Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon. 111, 622-630.
  • [16] Javed, K., Galib, C. M. A., Yang, F., Chen, C. M., Wang, C. (2014). A new approach to fabricate graphene electro-conductive networks on natural fibers by ultraviolet curing method. Synthetic Met. 193, 41-47.
  • [17] Fugetsu, B., Sano, E., Yu, H., Mori, K., Tanaka, T. (2010). Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon. 48(12), 3340-3345.
  • [18] Molina, J., Fernández, J., Fernandes, M., Souto, A. P., Esteves, M. F., Bonastre, J., Cases, F. (2015). Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide. Synthetic Met. 202, 110-122.
  • [19] Molina, J., Fernández, J., del Río, A., Bonastre, J., Cases, F. (2013). Chemical and electrochemical study of fabrics coated with reduced graphene oxide. Appl Surf Sci. 279, 46-54.
  • [20] Li, C., Zhuang, Z., Jin, X., Chen, Z. (2017). A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Appl Surf Sci. 422, 469-474.
  • [21] Thakur, S. ve Karak, N. (2015). Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon. 94, 224-242.
  • [22] Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S. (2010). Reduction of graphene oxide via L-ascorbic acid. Chem Commun (Camb). 46(7), 1112-4.
  • [23] Pei, S. ve Cheng, H. M. (2012). The reduction of graphene oxide. Carbon. 50(9), 3210-3228.
  • [24] Fernandez-Merino, M.J., Guardia, L., Paredes, J., Villar-Rodil, S., Solis-Fernandez, P., Martınez-Alonso, A., Tasco, J. M. D. (2010). Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J Phys Chem C. 114, 6426–6432.
  • [25] Cai, G., Xu, Z., Yang, M., Tang, B., Wang, X. (2017). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci. 393, 441-448.
  • [26] Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., Mirjalili, M. (2015). Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles. J Text I. 107(9), 1122-1134.
  • [27] Krishnamoorthy, K., Navaneethaiyer, U., Mohan, R., Lee, J., Kim, S. J. (2011). Graphene oxide nanostructures modified multifunctional cotton fabrics. Applied Nanoscience. 2(2), 119-126.
  • [28] Sahito, I.A., Sun, K. C., Arbab, A. A., Qadir, M. B., Jeong, S. H. (2015). Graphene coated cotton fabric as textile structured counter electrode for DSSC. Electrochim Acta. 173, 164-171.
  • [29] Shateri-Khalilabad, M. ve Yazdanshenas, M. E. (2013). Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose. 20(2), 963-972.
  • [30] Sahito, I.A., Sun, K. C., Arbab, A. A., Qadir, M. B., Jeong, S. H. (2015). Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide. Carbohydr Polym. 130, 299-306.
  • [31] Aslam, M., Kalyar, M. A. ve Raza, Z. A. (2016). Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater Res Express. 3(10).