Propilparabenin Daphnia magna Ve Saccharomyces cerevisiae Üzerindeki Toksik Etkilerinin Araştırılması

Parabenler, gıda, kozmetik ve ilaç gibi farklı ticari ürünlerde koruyucu olarak yaygın şekilde kullanılmaktadır. En yaygın kullanılan parabenlerden birisi olan propilparaben (PP) mikrobiyal büyümeyi engelleyerek birçok tüketici ürünün raf ömrünü uzatmaktadır. PP dahil olmak üzere parabenlerin geniş kullanımları çevrede birikimlerine sebep olmaktadır. Bu çalışmada, PP’nin Daphnia magna (D. magna) ve Saccharamyces cerevisiae (S. cerevisiae) üzerindeki olumsuz etkilerini belirlemek için toksisite analizleri yapılmıştır. Bu amaçla, D. magna yavruları (

___

  • Haman C, Dauchy X, Rosin C, Munoz J-F. Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Research. 2015;68:1-11.
  • Martín JMP, Peropadre A, Herrero Ó, Freire PF, Labrador V, Hazen MJ. Oxidative DNA damage contributes to the toxic activity of propylparaben in mammalian cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2010;702:86-91.
  • Golden R, Gandy J, Vollmer G. A review of the endocrine activity of parabens and implications for potential risks to human health. Critical reviews in toxicology. 2005;35:435-58.
  • Calafat AM, Ye X, Wong L-Y, Bishop AM, Needham LL. Urinary concentrations of four parabens in the US population: NHANES 2005–2006. Environmental health perspectives. 2010;118:679-85.
  • Gao Y, Ji Y, Li G, An T. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: Influence of alkyl-chain length. Water Research. 2016;91:77-85.
  • Kodani SD, Overby HB, Morisseau C, Chen J, Zhao L, Hammock BD. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation. Toxicology letters. 2016;262:92-9.
  • Kusk KO, Krüger T, Long M, Taxvig C, Lykkesfeldt AE, Frederiksen H, et al. Endocrine potency of wastewater: contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays. Environmental toxicology and chemistry. 2011;30:413-26.
  • Boberg J, Taxvig C, Christiansen S, Hass U. Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology. 2010;30:301-12.
  • González-Doncel M, García-Mauriño JE, San Segundo L, Beltrán EM, Sastre S, Torija CF. Embryonic exposure of medaka (Oryzias latipes) to propylparaben: effects on early development and post-hatching growth. Environmental Pollution. 2014;184:360-9.
  • Szeląg S, Zabłocka A, Trzeciak K, Drozd A, Baranowska-Bosiacka I, Kolasa A, et al. Propylparaben-induced disruption of energy metabolism in human HepG2 cell line leads to increased synthesis of superoxide anions and apoptosis. Toxicology in Vitro. 2016;31:30-4.
  • Soni M, Burdock G, Taylor S, Greenberg N. Safety assessment of propyl paraben: a review of the published literature. Food and Chemical Toxicology. 2001;39:513-32.
  • Butkovskyi A, Rijnaarts H, Zeeman G, Leal LH. Fate of personal care and household products in source separated sanitation. Journal of hazardous materials. 2016;320:427-34.
  • Siddique S, Kubwabo C, Harris SA. A review of the role of emerging environmental contaminants in the development of breast cancer in women. Emerging Contaminants. 2016;2:204-19.
  • Carmona E, Andreu V, Picó Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water. Science of the Total Environment. 2014;484:53-63.
  • Peng X, Ou W, Wang C, Wang Z, Huang Q, Jin J, et al. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Science of the Total Environment. 2014;490:889-98.
  • Shibata M-A, Yamada M, Hirose M, Asakawa E, Tatematsu M, Ito N. Early proliferative responses of forestomach and glandular stomach of rats treated with five different phenolic antioxidants. Carcinogenesis. 1990;11:425-9.
  • Bao-Liang S, Hai-Ying L, Dun-Ren P. In vitro spermicidal activity of parabens against human spermatozoa. Contraception. 1989;39:331-5.
  • Inui M, Adachi T, Takenaka S, Inui H, Nakazawa M, Ueda M, et al. Effect of UV screens and preservatives on vitellogenin and choriogenin production in male medaka (Oryzias latipes). Toxicology. 2003;194:43-50.
  • Pedersen KL, Pedersen SN, Christiansen LB, Korsgaard B, Bjerregaard P. The preservatives ethyl‐, propyl‐and butylparaben are oestrogenic in an in vivo fish assay. Pharmacology & toxicology. 2000;86:110-3.
  • García-Espiñeira MC, Tejeda-Benítez LP, Olivero-Verbel J. Toxic effects of bisphenol A, propyl paraben, and triclosan on Caenorhabditis elegans. International journal of environmental research and public health. 2018;15:684.
  • Bereketoglu C, Pradhan A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish. Science of the Total Environment. 2019;671:129-39.
  • Dobbins LL, Usenko S, Brain RA, Brooks BW. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. Environmental toxicology and chemistry. 2009;28:2744-53.
  • Lee J, Bang SH, Kim Y-H, Min J. Toxicities of four parabens and their mixtures to Daphnia magna and Aliivibrio fischeri. Environmental Health and Toxicology. 2018;33.
  • Terasaki M, Makino M, Tatarazako N. Acute toxicity of parabens and their chlorinated by‐products with Daphnia magna and Vibrio fischeri bioassays. Journal of Applied Toxicology. 2009;29:242-7.
  • Jordão R, Garreta E, Campos B, Lemos MF, Soares AM, Tauler R, et al. Compounds altering fat storage in Daphnia magna. Science of the Total Environment. 2016;545:127-36.
  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011;331:555-61.
  • Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a model organism: a comparative study. PloS one. 2011;6:e16015.
  • Duina AA, Miller ME, Keeney JB. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics. 2014;197:33-48.
  • Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiological Genomics. 2017;49:549-66.
  • Winter D, Podtelejnikov AV, Mann M, Li R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Current Biology. 1997;7:519-29.
  • Gasch AP, Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Functional & integrative genomics. 2002;2:181-92.
  • Gil FN, Gonçalves AC, Jacinto MJ, Becker JD, Viegas CA. Transcriptional profiling in Saccharomyces cerevisiae relevant for predicting alachlor mechanisms of toxicity. Environmental toxicology and chemistry. 2011;30:2506-18.