Güneş Kollektörü Seçici Yüzeyi Sürekli Üretimi için Beşikten Kapıya Yaşam Döngüsü Değerlendirmesi

Bu çalışmada, yenilenebilir enerji üretiminde yaygın bir şekilde kullanılan güneş kollektörünün seçiçi yüzeyi için beşikten kapıya yaşam döngüsü değerlendirmesi (YDD) yapılmıştır. Bu değerlendirmede, teknolojinin kullanımı ve hammaddelerin geri dönüşümünün araştırılmasının yanında, fabrikanın yapımı ve üretim basamakları araştırılmıştır. Bu çalışmada kullanılan yeni üretim prosesi süreklidir ve eski kesikli sistemlerden farklıdır. İstanbul, Türkiye'de üretimi olan ürünün ekoprofili kurulmuş bir prototip fabrikadan direk alınan data ile elde edilmiş ve çevreye olan etkisi analiz edilmiştir.

Cradle to Gate Life Cycle Assessment of Continuous Production for Solar Collector Selective Surface

In this study, a cradle-to-gate life cycle assessment (LCA) has been evaluated for the selective surface of solar collector which is commonly used in the production of renewable energy. The plant construction and production stages are investigated along with the use of technology and the recycling of raw materials in this assessment. The new production process is continuous and differs from the conventional batch systems in the respect. Product eco profile is obtained based on data from a live prototype plant in Istanbul, Turkey and its environmental impact is analyzed.

___

  • Pehnt, M. (2001). Life-cycle assessment of fuel cell stacks, Int J Hydrogen Energy, 26, 91-101.
  • Saymanowska, A. (2011). The significance of solar hot water installations in meeting CO2 emmissions reduction. Yüksek Lisans Tezi, İzlanda Üniversitesi, İzlanda, s. 38-54.
  • Khalid, A. (2009). Hybrid desiccant cooling system for hot regions. LAP Lambert Academic Publishing, Almanya, s. 110-143.
  • Taoussanidis, N. (2006). Life cycle assessment of combined solar system. Proceedings of the 4th WSEAS Int. Conf. on Heat Transfer, Thermal Enigneering and Environment, Elounda, Yunanistan, 21-23 Ağustost, s. 74-77.
  • Ardente,F., Beccali, G., Cellura, M., ve Brano, V. L. (2005). Life cycle assessment of a thermal collector: sensitivity analysis, energy and environmental balances, Renewable Energy, 30 (2), 109-130.
  • Sevencan, S., Altun Ciftcioglu, G. ve Kadırgan, M. A. N. (2011). A preliminary environmental assessment of power generation systems for a stand-alone mobile house with cradle to gate approach, GU J Sci, 24 (3), 487-494.
  • Lagorse, J., Simoes, M. G., Miraoui, A., ve Costerg, P. (2008). Energy cost analysis of a solar-hydrogen hybrid energy system for stand-alone applications, 2nd World Congree of Young Scientists on Hydrogen Energy Systems, 33 (12), 2871-2879.
  • Heikkilä, K. (2004). Environmental impact assessment using a weighting method for alternative airconditioning systems. Building and Environment, 39(10), 1133-1140.
  • Legarth,B. J., S. Åkesson, S., Ashkin, A., ve Imrell, A. M. (2000). A screening level life cycle assessment of the ABB EU 2000 air handling unit. Int. J LCA, 51, 47–58.
  • Environmental management—life cycle assessment—principles and framework. European Committee for Standardization (1997). ISO, 14040, Brüksel.
  • SimaPro7.3, http://www.pre.nl, (Feb 2010).
  • SimaPro7.3 databases, http://www.pre-sustainability.com/content/databases, (Aug 2011).
  • based on the method published by ecoinvent version 2.0 and expanded by PRé Consultants for raw materials available in the SimaPro 7 database
  • Turkish State Meteorological Service, http://www.dmi.gov.tr/index.aspx, (Sept 2011).
  • Greenhouse gas emissions, http://www.ghgprotocol.org, (Sept 2011).
  • Goedekoop, M.J., Spriensma, R. (2000). The Eco-indicator 99. A damage oriented method for Life Cycle Impact Assessment, PRé Consultants, Amersfoort, Netherlands.