Sığ Safsızlık Bağlanma Enerjisinin Hidrostatik Basınç Altında In Konsantrasyonuna Bağlılığı

Çinko sülfür InxGa1-xN/GaN silindirik kuantum telindeki (CQWWs) hidrojenik safsızlık taban durum bağlanma enerjisi, hidrostatik basınç altında In konsantrasyonu ve tel yarıçapının fonksiyonu olarak etkin kütle yaklaşımı ve varyasyonel teknikler kullanılarak incelendi. Uygulanan hidrostatik basınç etkisi, yasak enerji aralığı, tel yarıçapı ve etkin kütlenin basınca bağlılığı kullanılarak hesaplamalara katıldı. Hesaplamaların bağlanma enerjisi Eb’ nin merkezdeki bir safsızlık için hem hidrostatik basınç hem de In konsantrasyonu arttırıldığında, bu parametrelere bağlı olarak değiştiğini gösterdi. Çok büyük tel yarıçaplarında bağlanma enerjisinin basınçtan etkilenmediği, Ancak parçacıkların engellerle etkileşmeye başladığı tel yarıçaplarında bağlanma enerjisi bütün x değerleri için hidrostatik basınca bağlı olduğu gözlendi. Ayrıca, In konsantrasyonunun ve hidrostatik basıncın bağlanma enerjisine etkisi karşılaştırıldığında In konsantrasyonundan kaynaklanan etkinin daha güçlü olduğu bulundu

In Concentration Dependence of Shallow Impurity Binding Energy Under The Hydrostatic Pressure

The ground state binding energy of axial hydrogenic impurity in zinc-blende (ZB) InxGa1-xN/GaN cylindrical quantum well wires( CQWWs) are investigated as a function of the In concentration and the radius of the wire under hydrostatic pressure in the effective mass approximation and variational calculation scheme. The effect of applied hydrostatic pressure is introduced into the calculations using pressure dependent values of energy band gap and effective mass. Numerical results show that the ground-state shallow impurity binding energy Eb altered when both the hydrostatic pressure and In concentration increases for an on-center impurity. We have found that for large radii the binding energies are not affected by applied pressure. However, in the region where the particles interact with the barrier the binding energy is strongly dependent on the hydrostatic pressure for all x values. Furthermore, we have seen that the binding energy of the shallow impurity is affected more by the change of In concentration compared to the change of hydrostatic pressure.

___

  • S.C. Davies, D.J. Mowbray, Q. Wang, F. Ranalli, T. Wang, Appl. Phys. Lett. 95 (2009) 101909.
  • Y.K. Kuo, J.Y. Chang, M.C. Tsai, S.H. Yen, Appl. Phys. Lett. 95 (2009) 011116.
  • Y.J. Ohashi, K.J. Katayama, Q. Shen, T. Toyoda, J. Appl. Phys. 106 (2009) 063515.
  • S.F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, H. Okumura, Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells, Appl. Phys. Lett. 79 (2001) 4319-4321.
  • S.F. Chichibu, T. Onuma, T. Sota, S.P. Denbaars, S. Nakamura, T. Kitamura, Y. Ishida, H. Okumura, Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells , J. Appl. Phys. 93 (2003) 2051-2054.
  • C.X. Xia, S.Y. Wei, Quantum size effect on excitons in zinc-blende GaN/AlN quantum dot, Microelectron J. 37 1408 (2006).
  • J. Simon, N. T. Pelekonos, C., Adelmann, E.M., Guerreno, B. Daudin, L.S. Dong, H., Mariatte, Direct comparison of recombination dynamics in cubic and hexagonal GaN/AlN quantum dots, Phys. Rev. B 68 (2003) 035312-035318
  • C. Adelmann, E. Martinez Guerrero, F. Chabuel, J. Simon, B. Bataillou, G. Mula, Le Si Dang, N.T. Pelekanos, B. Daudin, G. Feuillet, H. Mariette, Growth and characterisation of self-assembled cubic GaN quantum dots, Mater. Sci. Eng., B 82 (1998) 212.
  • A.M. Elabsy, Journal of Physics: Condensed Matter 6 (1994) 10025.
  • J.D. Correa, O. Ceopeda-Giraldo, N. Porras- Montenegro, C.A. Duque, Hydrostatic pressure effects on the donor impurity-related photoionization cross-section in cylindrical- shaped GaAs/GaAlAs quantum well wires, Phys. Status Solidi B 241 (2004) 3311-3317.
  • F. Jiang, C. Xia, S. Wei, Hydrogenic impurity states in zinc-blende InGaN quantum dot, Physica B 403 (2008) 165-169.
  • N. E. Christensen, I. Gorczyca, Optical and structural properties of III-V nitrides under pressure, Phy. Rev. B 50 (1994) 4397-4415
  • M. D. McCluskey, C. G. Van de Walle, L. T. Romano, B. S. Krusor, and N. M. Johnson, Effect of composition on the band gap of strained InxGa1− xN alloys, J. Appl. Phys.93 (2003) 4340 -4342
  • J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Small band gap bowing in In1−xGaxN alloys, Appl. Phys. Lett.80 (2002) 4741-4743.
  • M. D. McCluskey, C. G. Van deWalle, C. P. Master, L. T. Romano, and N. M. Johnson, Large band-gap bowing of InxGa1-xN alloys, Appl. Phys. Lett.72 (1998) 2725-2730.
  • Z. Dridi, B. Bouhafs, and P. Ruterana, Strong dependence of the fundamental band gap on the alloy composition in cubic InxGa1-xN and InxAl1-xN alloys, Semicond. Sci. Technol. 18 (2003) 850.
  • Poul Georg Moses and Chris G. Van de Walle, Band bowing and band alignment in InGaN alloys, Appl. Phys. Lett. 96 (2010) 021908-021910 .
  • S. Schulz and P. O. Reilly, Excitonic binding energies in non-polar GaN quantum wells, Phys. Status Solidi C 7, (2010) 1900 .
  • P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Springer, Berlin, 1998
  • H. Morkoç, Handbook of Nitride Semiconductors and Devices, Wiley-VCH, Berlin, 2008.
  • D.S. Chuu, C.S. Wang, Electronic energy spectrum in a barrier-like multilayer quantum wire with a magnetic field parallel to the wire axis, Physica B 202 (1994) 118-126.
  • J.W. Brown, H.N. Spector, Hydrogen impurities in quantum well wires, J. Appl. Phys. 59 (1986) 1179-1186.
  • P. Baser, S. Elagoz, D. Kartal, H.D. Karkı, Hydrogenic impurity states in zinc-blende InxGa1−xN/GaN in cylindrical quantum well wires, Superlatt and Microst. 49 (2011) 497-503.
  • P. Baser, S. Elagoz, D. Kartal, The effects of pressure and barrier height on donor binding energy in GaAs/Ga1-xAlxAs cylindrical quantum well wires, Physica B 405 (2010)3239- 3242.