Çift Kür Olabilen Hidrofob Kaplamaların Mekanik, Yüzey ve Termal Özelliklerinin İncelenmesi

Önemli kaplama teknolojilerinden biri olan ultraviyole (UV) ışıkla sertleştirme yöntemi, artan uygulama alanları ve diğer yöntemlere kıyasla var olan avantajları ile birlikte her geçen gün daha fazla tercih edilmektedir. Bu makalede, bir izosiyanat akrilat olan ICA (Laromer® LR 9000) reçinesi ile monoetilen glikol (MEG), dietilen glikol (DEG) ve dialkol ile sonlandırılmış perfloropolieter türevi olan floro alkol (Fluorolink® E10-H) içeren reçine sistemleri kullanılarak kaplamalar hazırlanmıştır. Bu reçine sistemlerinin ısı ve UV ile sertleştirilmesi sonucunda farklı oranlarda flor içeren serbest filmler elde edilmiş ve ayrıca alüminyum levhalar üzerine de bu formülasyonlar kaplama yapılmıştır. Elde edilen serbest filmlerin; çekme testi, termogravimetrik analiz (TGA) ve diferansiyel taramalı kalorimetre (DSC) yardımıyla mekanik ve termal özellikleri belirlenmiştir. Ayrıca alüminyum levha üzerine yapılan kaplamaların özellikleri ise; kalem sertlik testi, çapraz kesme testi, parlaklık testi ve temas açısı testi ile gözlemlenmiştir. Sonuçlar incelendiğinde hidrofobik ve parlak bir kaplama elde edildiği görülmüştür. Ayrıca farklı oranlarda eklenen floro alkolün monoetilen glikol içeren yapı ile dietilen glikol içeren yapının mekanik özelliklerinde farklı etkiler yarattığı tespit edilmiştir. 

Investigation of Mechanical, Surface and Thermal Properties of Dual-Curable Hydrophobic Coatings

One of the important coating technologies, ultraviolet (UV) light curing, is increasingly preferred with increasing application areas and advantages that are present compared to other methods. In this article, coatings were prepared using ICA (Laromer® LR 9000) resin, an isocyanate acrylate resin, and resin systems containing monoethylene glycol (MEG), diethylene glycol (DEG) and fluoro alcohol (Fluorolink® E10-H), a perfluoropolyether derivative terminated with dialkol. As a result of heat and UV curing of these resin systems, free films were obtained at different ratios fluorine containing and these formulations were also coated on aluminum sheets. Obtained free films; Mechanical and thermal properties were determined by tensile testing, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the properties of the coatings coated on the aluminum sheet determined by tests as pencil hardness test, cross-cut test, gloss test and contact angle test. When the results are examined, it is seen that a hydrophobic and bright coating is obtained. It has also been found that fluoroalcohol added at different ratios has different effects on the mechanical properties of the structure containing diethylene glycol with the structure containing monoethylene glycol.

___

  • [1] Chattopadhyay, D. K., Panda, S. S., & Raju, K. V. S. N. (2005). Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Progress in Organic Coatings, 54(1), 10-19.
  • [2] Yan, R., Yang, D., Zhang, N., Zhao, Q., Liu, B., Xiang, W., ... & Hu, W. (2018). Performance of UV curable lignin based epoxy acrylate coatings. Progress in Organic Coatings, 116, 83-89.
  • [3] Chen, X., Hu, Y., Song, L., & Jiao, C. (2008). Preparation and thermal properties of a novel UV‐cured star polyurethane acrylate coating. Polymers for Advanced Technologies, 19(4), 322-327.
  • [4] Park, C. H., Lee, S. W., Park, J. W., & Kim, H. J. (2013). Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities. Reactive and Functional Polymers, 73(4), 641-646.
  • [5] Shen, L., Li, Y., Zheng, J., Lu, M., & Wu, K. (2015). Modified epoxy acrylate resin for photocurable temporary protective coatings. Progress in Organic Coatings, 89, 17-25.
  • [6] Decker, C. (2002). Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 23(18), 1067-1093.
  • [7] Velankar, S., Pazos, J., & Cooper, S. L. (1996). High-performance UV-curable urethane acrylates via deblocking chemistry. Journal of applied polymer science, 62(9), 1361-1376.
  • [8] Park, Y. J., Lim, D. H., Kim, H. J., Park, D. S., & Sung, I. K. (2009). UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 29(7), 710-717.
  • [9] Zhang, J. Y., Windall, G., & Boyd, I. W. (2002). UV curing of optical fibre coatings using excimer lamps. Applied surface science, 186(1-4), 568-572.
  • [10] Studer, K., Decker, C., Beck, E., & Schwalm, R. (2005). Thermal and photochemical curing of isocyanate and acrylate functionalized oligomers. European polymer journal, 41(1), 157-167.
  • [11] Decker, C., Masson, F., & Schwalm, R. (2003). Dual‐Curing of Waterborne Urethane‐Acrylate Coatings by UV and Thermal Processing. Macromolecular Materials and Engineering, 288(1), 17-28.
  • [12] Jung, T., Simmendinger, P., Studer, K., & Tobisch, W. (2006). Plasma technology: a solution for UV curing on 3-dimensional substrates.
  • [13] Fouassier, J. P., & Rabek, J. F. (Eds.). (1993). Radiation curing in polymer science and technology: Practical aspects and applications (Vol. 4). Springer Science & Business Media.
  • [14] Li, T. X., & Chen, F. (2015). Study of Organic Fluorine Modified Epoxy Acrylic Cathodic Electrodeposition Coatings. In Applied Mechanics and Materials (Vol. 722, pp. 30-33). Trans Tech Publications.
  • [15] Bongiovanni, R., Di Meo, A., Pollicino, A., Priola, A., & Tonelli, C. (2008). New perfluoropolyether urethane methacrylates as surface modifiers: Effect of molecular weight and end group structure. Reactive and Functional Polymers, 68(1), 189-200.
  • [16] Bongiovanni, R., Medici, A., Zompatori, A., Garavaglia, S., & Tonelli, C. (2012). Perfluoropolyether polymers by UV curing: design, synthesis and characterization. Polymer International, 61(1), 65-73.
  • [17] Jeon, J. H., Park, Y. G., Lee, Y. H., Lee, D. J., & Kim, H. D. (2015). Preparation and properties of UV‐curable fluorinated polyurethane acrylates containing crosslinkable vinyl methacrylate for antifouling coatings. Journal of Applied Polymer Science, 132(26).
  • [18] Wu, J., Zhang, R., Ma, G., Hou, C., & Zhang, H. (2017). Preparation and properties of fluorinated oligomer with tertiary amine structure in the UV curable coatings. Journal of Applied Polymer Science, 134(2).
  • [19] Studer, K., Decker, C., Beck, E., & Schwalm, R. (2005). Thermal and photochemical curing of isocyanate and acrylate functionalized oligomers. European polymer journal, 41(1), 157-167.
  • [20] Lei, H., He, D., Guo, Y., Tang, Y., & Huang, H. (2018). Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer. Applied Surface Science, 442, 71-77.
  • [21] Çakır, M. (2017). Investigation of Coating Performance of UV-Curable Hybrid Polymers Containing 1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane Coated on Aluminum Substrates. Coatings, 7(3), 37.